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*DEFINE_PRESSURE_TUBE: simulating pressure 
tube sensors in pedestrian crash 

Jesper Karlsson1 
1DYNAmore Nordic AB 

1 Introduction 
This paper presents the new keyword *DEFINE_PRESSURE_TUBE, designed to efficiently simulate  
pressure waves in a thin air-filled tube. The main application in mind is a crash detection system for 
pedestrian safety, where an air-filled tube is embedded in the front bumper and fitted with pressure 
sensors at the ends, see Figure 1. In the case of an impact, the tube is compressed and a pressure 
wave travels to the sensors, enabling localization and extent of the impact. In recent years, such 
systems have gained popularity in the automotive industry, posing a challenging task in efficient and 
accurate simulations. The aim of this paper is to give an overview of the theory and usage of the 
keyword, as well as to show comparisons with experiments and existing methods in LS-DYNA. 
 
 

 
Fig.1: Schematics of bumper cross section with embedded tube. 

2 Keyword input and database output 
The *DEFINE_PRESSURE_TUBE keyword defines a closed gas filled tube using tubular beam 
elements and the pressure is calculated from area changes, in time and space, given by contact 
penetration from surrounding elements. Currently only mortar contacts are supported.  
 
Input data are given as below: 
 

Card 1 1 2 3 4 5 6 7 8 
Variable PID WS PR MTD ATYPE    

Type I F F I I    
Default 0 0.0 0.0 0 0    

Optional card:         

Card 2 1 2 3 4 5 6 7 8 
Variable VISC CFL DAMP      

Type F F F      
Default 1.0 0.9 0.0      

 
Only the first three parameters on card one are compulsory: 

Vehicle structure 

Bumper foam 

Bumper shell 

Silicone tube 
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• PID: Part ID of tube. The tube(s) consists of all the beam elements in the part. Only ELFORM = 
1,4,5,11 are allowed. Each set of joint beam elements in the part will model a tube and the 
beam elements may not contain junctions. Also, two different parts where *DEFINE_- 
PRESSURE_TUBE is applied may not share beam nodes. For MPP all elements in the part will 
be on a single processor, therefore it is recommended that the part should only contain 
beam elements. 

• WS: Wave propagation speed. 
• PR: Initial tube pressure. 

Parameter 4 and 5 concerns solver type and tube area calculation: 
• MTD: Solution method. Only one method is currently supported (MTD=0), described in 

Sections 3 and 4. 
• ATYPE: Type of cross section area calculation of the tube. Initial area is given by the diameter 

on *SECTION_BEAM. If both inner and outer diameter is given, the inner diameter is used, 
otherwise the outer diameter. 

0. Mortar contact penetration distance gives the minor axis of an ellipse with constant 
circumference, calculated from the initial area. 

1. Mortar contact penetration distance gives the radius of a perfectly circular tube. 

For MTD=0 and extra optional card may be given: 
• VISC: Artificial viscosity factor. Multiplies 𝜖𝜖 in Section 5. 
• CFL: Time step factor for tube sub-stepping. Multiplies 𝐶𝐶𝐶𝐶𝐶𝐶 in Section 5. 
• DAMP: Linear damping factor to emulate pressure losses. Factor 𝑑𝑑 in Section 5. 

From a given PID, the solver will get the initial tube dimensions from the length and thickness of each 
beam element on that part. After initialization, the tube solver only uses penetration distance from the 
mortar contacts to calculate area over time, and is independent of the beam element deformation, i.e. 
it is assumed that the length of the tube is not too distorted over time. The tube solver uses a separate 
time integration routine, with time step size less than or equal to the global time step. 
 
Pressure, density, velocity and tube area are output through the keyword *DATABASE_PRTUBE, and 
can be visualized in LS-PREPOST. 
 

3 The tube model 
Pressure propagation is governed by a 1D model based on the compressible Euler equations, 
resulting in a very efficient method compared to 3D CFD or particle methods. This 1D model is derived 
in the following sections, based on [1]. 

3.1 Euler equations 
The 1D Euler equations for a compressible inviscid fluid (in thermal equilibrium) are given in 
differential form by 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜕𝜕𝜌𝜌) = 0, 
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜕𝜕𝜌𝜌) +
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜕𝜕𝜌𝜌2 + 𝑝𝑝) = 0, 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕
𝜕𝜕𝜕𝜕

�𝜌𝜌(𝜕𝜕 + 𝑝𝑝)� = 0, 
where the independent variables are: fluid density 𝜕𝜕, velocity 𝜌𝜌, energy per unit volume 𝜕𝜕, and 
pressure 𝑝𝑝. The energy 𝜕𝜕 is related to the internal energy per unit mass, 𝑒𝑒, by 

𝜕𝜕 = 𝜕𝜕𝑒𝑒 +
𝜕𝜕
2
𝜌𝜌2. 

That is, the energy per unit volume is composed of molecular internal energy (rotational, vibrational, 
translational, etc.) plus kinetic energy of the fluid flow. 
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Since we have three equations but four independent variables we need an extra equation to complete 
this system of equations. This can be done by an equation of state, in our case the ideal gas law for a 
polytropic gas 

𝜕𝜕 =
𝑝𝑝

(𝛾𝛾 − 1) +
𝜕𝜕
2
𝜌𝜌2,  

where 𝛾𝛾 = 𝑐𝑐𝑝𝑝/𝑐𝑐𝑣𝑣 is the adiabatic index, 𝑐𝑐𝑝𝑝 is the specific heat at constant pressure, and 𝑐𝑐𝑣𝑣 is the 
specific heat at constant volume. The adiabatic index is approximately 1.4 for air. 
 
Although stated in differential form, the above system is a system of conservation laws, describing the 
conservation of mass, momentum, and energy. Such systems allow complex (sometimes non-
physical) phenomena to develop over time, e.g. shocks and rarefaction waves, particularly in the 
supersonic range when the fluid velocity 𝜌𝜌 is close to the speed of sound  

𝑐𝑐 ≔ ��
𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕
�
𝑠𝑠

= �
𝐾𝐾𝑠𝑠
𝜕𝜕

, 

where 𝐾𝐾𝑠𝑠 is the isentropic bulk modulus. In our application, we assume that we have smooth flows in 
the subsonic regime. 
 

3.2 Isentropic Euler equations 
Entropy is a measure of the disorder in the system and can be defined as 

𝑠𝑠 ≔ 𝑐𝑐𝑣𝑣 log
𝑝𝑝
𝜕𝜕𝛾𝛾

. 

One of the fundamentals of thermodynamics is that the entropy in a system must increase over time, a 
condition that is useful to weed out physical solutions to the Euler equations. Typically, the entropy 
increases when a particle passes through a shock wave. 
 
From the entropy we deduce that 

𝑝𝑝(𝜕𝜕, 𝑠𝑠) = 𝜕𝜕𝛾𝛾𝑒𝑒𝑠𝑠/𝑐𝑐𝑣𝑣 , 
and  

𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕

= 𝛾𝛾𝜕𝜕𝛾𝛾−1𝑒𝑒𝑠𝑠/𝑐𝑐𝑣𝑣 =
𝛾𝛾𝑝𝑝
𝜕𝜕

. 

Also, from the definition of entropy, the energy equation in the Euler equations can be replaced by 
𝜕𝜕𝑠𝑠
𝜕𝜕𝜕𝜕

+ 𝜌𝜌
𝜕𝜕𝑠𝑠
𝜕𝜕𝜕𝜕

= 0. 
 
For smooth flows (e.g. acoustic waves) the entropy is constant along a particle path, i.e. the above 
equation is automatically satisfied. The Euler equations can then be reduced to the isentropic Euler 
equations 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜕𝜕𝜌𝜌) = 0, 
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜕𝜕𝜌𝜌) +
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜕𝜕𝜌𝜌2 + 𝑐𝑐2𝜕𝜕/𝛾𝛾) = 0, 
with sound speed 

𝑐𝑐 ≔ �
𝛾𝛾𝑝𝑝
𝜕𝜕

. 

These equations still allow shocks to form, but such shocks lack physical meaning since the entropy is 
assumed constant along the flow. 
 

3.3 Isothermal Euler equations 
Assume constant entropy and let 𝑐𝑐𝑣𝑣 , 𝑐𝑐𝑝𝑝 → ∞ such that 𝛾𝛾 = 𝑐𝑐𝑝𝑝/𝑐𝑐𝑣𝑣 → 1. This corresponds to molecules 
with infinitely many degrees of freedom that can take up an infinite amount of energy without changing 
the temperature of the system. Thus, such a fluid will maintain a constant temperature. 
 
From the isentropic Euler equations, we then get the isothermal Euler equations 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜕𝜕𝜌𝜌) = 0, 
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𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜕𝜕𝜌𝜌) +
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜕𝜕𝜌𝜌2 + 𝑐𝑐2𝜕𝜕) = 0, 
 
and the pressure is proportional to the density through 

𝑝𝑝 = 𝑐𝑐2𝜕𝜕, 
where the sound speed, 𝑐𝑐, is constant. 
 
Although this is still a non-linear system, no shocks will develop over time for isentropic and isothermal 
flow. 
 

3.4 Acoustic wave equation 
For acoustic phenomena, it is assumed that variations in pressure, density, and velocity, are small 
perturbations (𝛿𝛿𝜕𝜕, 𝛿𝛿𝑝𝑝, 𝛿𝛿𝜌𝜌), from a steady state (𝜕𝜕0, 𝑝𝑝0,𝜌𝜌0). 
 
Let 𝜌𝜌0 = 0, and 𝜕𝜕 = 𝜕𝜕0 + 𝛿𝛿𝜕𝜕0, then the isothermal Euler equations become 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕
𝜕𝜕𝜕𝜕

�(𝜕𝜕0 + 𝛿𝛿𝜕𝜕)𝜌𝜌� = 0, 
𝜕𝜕
𝜕𝜕𝜕𝜕
�(𝜕𝜕0 + 𝛿𝛿𝜕𝜕)𝜌𝜌� +

𝜕𝜕
𝜕𝜕𝜕𝜕

�(𝜕𝜕0 + 𝛿𝛿𝜕𝜕)𝜌𝜌2 + 𝑐𝑐2𝜕𝜕� = 0, 
and if we ignore higher order terms we get the linearized equations 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕0
𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

= 0, 

𝜕𝜕0
𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

+ 𝑐𝑐2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0. 
Taking the temporal derivative of the first equation and the spatial derivative of the second gives, 
together with 𝜕𝜕 = 𝑝𝑝/𝑐𝑐2, the classical wave equation 

1
𝑐𝑐2
𝜕𝜕2𝑝𝑝
𝜕𝜕𝜕𝜕2

−
𝜕𝜕2𝑝𝑝
𝜕𝜕𝜕𝜕2

= 0. 
 
 

3.5 Quasi-1D Euler equations 
To utilize the above theory in the context of a pressure tube we need to consider the variation of the 
cross-section area of the tube. Thus, for a pipe of cross section area 𝐴𝐴 = 𝐴𝐴(𝜕𝜕, 𝜕𝜕), we assume the 
volume change 

d𝑉𝑉(𝜕𝜕) = 𝐴𝐴(𝜕𝜕, 𝜕𝜕)d𝜕𝜕 + 𝑂𝑂(d𝜕𝜕2). 
 
The conservation of mass along a segment [𝜕𝜕, 𝜕𝜕 + d𝜕𝜕] then becomes 

𝜕𝜕
𝜕𝜕𝜕𝜕

(𝐴𝐴𝜕𝜕)d𝜕𝜕 + [𝐴𝐴𝜕𝜕𝜌𝜌]𝑥𝑥𝑥𝑥+d𝑥𝑥 = 0, 
which can be approximated by 

𝜕𝜕
𝜕𝜕𝜕𝜕

(𝐴𝐴𝜕𝜕)d𝜕𝜕 +
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝐴𝐴𝜕𝜕𝜌𝜌)d𝜕𝜕 = 0, 
or in differential form 

𝜕𝜕
𝜕𝜕𝜕𝜕

(𝐴𝐴𝜕𝜕) +
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝐴𝐴𝜕𝜕𝜌𝜌) = 0. 
 
Similarly, for the momentum equation, we have 

𝜕𝜕
𝜕𝜕𝜕𝜕

(𝐴𝐴𝜕𝜕𝜌𝜌) +
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝐴𝐴𝜕𝜕𝜌𝜌2) + 𝐴𝐴
𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕

= 0, 
or 

𝜕𝜕
𝜕𝜕𝜕𝜕

(𝐴𝐴𝜕𝜕𝜌𝜌) +
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝐴𝐴𝜕𝜕𝜌𝜌2 + 𝐴𝐴𝑝𝑝) = 𝑝𝑝
𝜕𝜕𝐴𝐴
𝜕𝜕𝜕𝜕

, 
and for the energy equation we simply get 

𝜕𝜕
𝜕𝜕𝜕𝜕

(𝐴𝐴𝜕𝜕) +
𝜕𝜕
𝜕𝜕𝜕𝜕

�𝐴𝐴𝜌𝜌(𝜕𝜕 + 𝑝𝑝)� = 0. 
 
To summarize, the full quasi-1D Euler equations for varying thickness are  
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𝜕𝜕
𝜕𝜕𝜕𝜕

(𝐴𝐴𝜕𝜕) +
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝐴𝐴𝜕𝜕𝜌𝜌) = 0, 
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝐴𝐴𝜕𝜕𝜌𝜌) +
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝐴𝐴𝜕𝜕𝜌𝜌2 + 𝐴𝐴𝑝𝑝) = 𝑝𝑝
𝜕𝜕𝐴𝐴
𝜕𝜕𝜕𝜕

, 
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝐴𝐴𝜕𝜕) +
𝜕𝜕
𝜕𝜕𝜕𝜕

�𝐴𝐴𝜌𝜌(𝜕𝜕 + 𝑝𝑝)� = 0, 
which correspond to the original Euler equations, but with a source term coming from the varying cross 
section area. These equations are described in [2]. 
 

3.6 Quasi-1D acoustic equations 
The quasi-1D isothermal Euler equations become, 

𝜕𝜕
𝜕𝜕𝜕𝜕

(𝐴𝐴𝜕𝜕) +
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝐴𝐴𝜕𝜕𝜌𝜌) = 0, 
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝐴𝐴𝜕𝜕𝜌𝜌) +
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝐴𝐴𝜕𝜕𝜌𝜌2 + 𝐴𝐴𝑐𝑐2𝜕𝜕) = 𝑝𝑝
𝜕𝜕𝐴𝐴
𝜕𝜕𝜕𝜕

, 
and linearization around (𝜕𝜕0, 𝑝𝑝0,𝜌𝜌0 = 0) gives the acoustic approximation 
 

𝜕𝜕
𝜕𝜕𝜕𝜕

(𝐴𝐴𝜕𝜕) + 𝜕𝜕0
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0, 

𝜕𝜕0
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑐𝑐2
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝐴𝐴𝜕𝜕) = 𝑝𝑝
𝜕𝜕𝐴𝐴
𝜕𝜕𝜕𝜕

, 
where 𝜕𝜕 = 𝐴𝐴𝜌𝜌. Expressed in 𝜕𝜕 and 𝑝𝑝 we have 
 

𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕

+
𝜕𝜕 ln𝐴𝐴
𝜕𝜕𝜕𝜕

𝑝𝑝 +
𝑝𝑝0
𝐴𝐴
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0, 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝐴𝐴
𝑐𝑐2

𝑝𝑝0
𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕

= 0. 

 

4 Numerics 
To solve the acoustic approximation of the quasi-1D Euler equations we use the simplest possible 
method for advection problems on variable meshes, i.e. the continuous Galerkin method with artificial 
viscosity. 
 
In semi-discrete form, the continuous Galerkin method is 

�𝑴𝑴 𝟎𝟎
𝟎𝟎 𝑴𝑴�

d
d𝜕𝜕
�
𝒑𝒑
𝒚𝒚� + �

𝑴𝑴𝐴𝐴(𝜕𝜕) 𝑝𝑝0𝑲𝑲𝐴𝐴(𝜕𝜕)
𝑐𝑐2

𝑝𝑝0
𝑲𝑲𝐵𝐵(𝜕𝜕) 𝟎𝟎

� �
𝒑𝒑
𝒚𝒚� = �𝟎𝟎𝟎𝟎�, 

with nodal solution variables 
𝒑𝒑 = (𝑝𝑝0, 𝑝𝑝1, … , 𝑝𝑝𝑁𝑁−1, 𝑝𝑝𝑁𝑁), 
𝒚𝒚 = (𝐴𝐴0𝜌𝜌0 = 0,𝐴𝐴1𝜌𝜌1, … ,𝐴𝐴𝑁𝑁−1𝜌𝜌𝑁𝑁−1,𝐴𝐴𝑁𝑁𝜌𝜌𝑁𝑁 = 0). 

The mass and stiffness matrices are given by 

𝑴𝑴𝑖𝑖𝑖𝑖 = �𝜙𝜙𝑖𝑖𝜙𝜙𝑖𝑖 d𝜕𝜕, 

(𝑴𝑴𝐴𝐴)𝑖𝑖𝑖𝑖 = �
𝜕𝜕 ln𝐴𝐴
𝜕𝜕𝜕𝜕

𝜙𝜙𝑖𝑖𝜙𝜙𝑖𝑖 d𝜕𝜕, 

(𝑲𝑲𝐴𝐴)𝑖𝑖𝑖𝑖 = �
𝜙𝜙′

𝑖𝑖𝜙𝜙𝑖𝑖
𝐴𝐴

d𝜕𝜕, 

(𝑲𝑲𝐵𝐵)𝑖𝑖𝑖𝑖 = �𝐴𝐴𝜙𝜙′
𝑖𝑖𝜙𝜙𝑖𝑖 d𝜕𝜕, 

with nodal basis functions 𝜙𝜙𝑖𝑖. 
 
This system is strictly hyperbolic with the distinct real eigenvalues 

𝜆𝜆1,2(𝜕𝜕) =
Δ𝜕𝜕
2
𝜕𝜕 ln𝐴𝐴
𝜕𝜕𝜕𝜕

± ��
Δ𝜕𝜕
2
𝜕𝜕 ln𝐴𝐴
𝜕𝜕𝜕𝜕

�
2

+ 𝑐𝑐2, 

and gives the CFL condition 
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Δ𝜕𝜕(𝜕𝜕) <
Δ𝜕𝜕

max(𝜆𝜆1(𝜕𝜕), 𝜆𝜆2(𝜕𝜕))
≤

Δ𝜕𝜕

Δ𝜕𝜕 �𝜕𝜕 ln𝐴𝐴
𝜕𝜕𝜕𝜕 � + 𝑐𝑐

. 

This condition is only necessary, not necessarily sufficient, for the convergence of an explicit one-step 
method. It makes sure that the time it takes for a wave of speed 𝜆𝜆1,2 to pass a computational domain 
of size Δ𝜕𝜕 is longer than the computational time step Δ𝜕𝜕. Thus, the computational solution has a 
reasonable chance to keep up with the wave. 
 
Adding artificial diffusion of size 𝜖𝜖 leads to the system 
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′
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The CFL condition now becomes 

Δ𝜕𝜕(𝜕𝜕) <
Δ𝜕𝜕

max(𝜆𝜆1(𝜕𝜕), 𝜆𝜆2(𝜕𝜕))
≤

Δ𝜕𝜕
2ϵ
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𝜕𝜕𝜕𝜕 � + 𝑐𝑐
=:𝐶𝐶𝐶𝐶𝐶𝐶, 

and to prevent unnecessarily small Δ𝜕𝜕(𝜕𝜕) for small Δx, we set 
𝜖𝜖 = 𝑐𝑐Δ𝜕𝜕. 

 
Optional linear damping of size 𝑑𝑑 adds yet another term: 
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Time integration is done with Heun’s method, a second order Runge-Kutta method, 
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5 Validation 
As test example, a mass is dropped onto a 1.7 m long silicone tube with inner diameter 4 mm and 
outer diameter 8 mm, see Figure 2. The impactor and the support are approximated as rigid bodies, 
and the impactor is constrained to only allow translational movement in the x-direction, while the 
support is completely fixed. The tube is fixed at the two ends, as well as halfway between the point of 
impact and the ends. Experimental data were provided by Volvo Car Corporation. 
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Fig.2: Tube test geometry for the embedded pressure tube. A mass is dropped from above with an 
initial downwards velocity of 10 km/h. The support (blue) is fixed. Rotational and sideways 
movement of the impactor (green) is restricted. The tube is fixed at the ends and around 
halfway between the ends and the point of impact. 

 
Three approaches are tested (see Figure 3-6); the corpuscular particle method (CPM), the pressure 
tube embedded in a shell tube, and the pressure tube by itself: 
 

1. CPM: This may be the most physically accurate method of the three since it models the 
interaction between “gas particles” and the structure, without any special assumptions on 
the tube geometry and tube-gas interaction. However, CPM generally gives noisy results and 
is quite expensive. In our examples the tube is modeled by shell elements and is filled with 
two million particles. 

2. Pressure tube only: Here the tube is modeled using only beam elements. The tubular beam 
elements have both an inner and outer diameter, and models both structural tube response 
and pressure. Beam contact stiffness governs tube radial response and should be fitted to 
data w.r.t. penetration depth and velocity. Since contact stiffness gives a purely elastic 
response this may not be suitable for plastic deformation. 

3. Shell tube with embedded pressure tube: Here tubular beam elements with inner diameter 
0 are used, embedded inside a shell tube. The beam elements model air only, thus density 
and stiffness of the associated material are set to reasonably low values. Structural response 
is governed by the shell elements and the beam-to-shell contact stiffness corresponds to 
tube air pressure response.  

Approximate run times for the different cases were:  
 

1. CPM: 170 hours total CPU time. 
2. Pressure tube only: 10 minutes total CPU time. 
3. Shell tube with embedded pressure tube: 4 hours total CPU time. 
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Fig.3: Initial cross sections for the hollow pressure tube. The pressure tube is here visualized using 

beam prisms and thickness of the shell elements is shown.  

 

 
Fig.4: Initial cross section for the pressure tube embedded in a shell tube. The pressure tube is here 

visualized using beam prisms and thickness of the shell elements is shown.  
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Fig.5: Cross section of the CPM shell tube filled with two million particles. Note that by the particles 

fill the tube all the way to the mid surface of the shell elements (here extruded), resulting in a 
larger volume. However, this still gives reasonable results. Another approach, better capturing 
the right cross section area, is found in Section 5.3. 

 

 
Fig.6: Cross section of the embedded pressure tube right after impact at 3ms. Here the penetration 

between the shells and the beams can be seen clearly. 

 

5.1 Elastic tube 
In this example, the impactor has an initial velocity of 10 km/h and the tube is modeled with 
MAT_ELASTIC. Impact will give rise to a pressure wave that bounces back and forth through the tube, 
and the pressure of interest is measured at the ends of the tube, see Figure 8. The wave speed here 
is much larger than the speed of deformation, and when the pressure wave comes back from being 
reflected at the ends, the impactor has bounced back and the tube has regained its shape. Tube 



11th European LS-DYNA Conference 2017, Salzburg, Austria 
 
 

 
© 2017 Copyright by DYNAmore GmbH 

deformation in the impact location is visualized in Figure 7. Since the tube is fully elastic, the radial 
deformation can be approximated quite well with beam elements only. 
 

 

 
Fig.7: Cross section areas at location of impact (A: no shell tube, B+D: shell tube with embedded 

pressure tube, C: shell tube with CPM). Pressure tube area is calculated from contact 
penetration while shell tube area is estimated from geometry using the inner shell surface. It is 
evident that the pressure tube area when embedded in shell elements underestimates the 
area contraction, likely because a smaller beam radius gives inaccurate contact penetration. 
The contact stiffness parameters for the pressure tube without shells are here chosen by hand 
to give a similar area to the shell tube. Since the inner shell surface is used here, the actual 
area for CPM is greatly understated. 

 
 

 
Fig.8: Pressure at end (normalized values). As expected from the area calculation, the embedded 

pressure tube underestimates the pressure. Using only the pressure tube without any shells 
also underestimates the pressure, but manages to capture the first pressure wave quite well, 
although the consequent reflections seem to be slightly out of phase.  
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5.2 Plastic tube 
In this example, the impactor has an initial velocity of 10 km/h and the tube is modeled with 
MAT_PIECEWISE_LINEAR_PLASTICITY, using the same elasticity parameters as above. This plastic 
deformation agrees more with what is observed in experiments, although the tube may still be too stiff, 
as the experiments result in a completely compressed tube. Note that the radial plastic deformation of 
the tube cannot be modeled by the beam elements alone, see Figure 9.  
 
The pressure wave for the tube enclosed in shells experiences less negative pressure than the 
pressure tube without shells, see Figure 10. However, the amplitude is again a bit lower. Note that all 
the simulations differ from the experimental data, which experiences no negative pressure at all. This 
is because the tested tube does not have any expansion at all after being fully compressed; 
essentially, it is being fused together. 
 
 

 
Fig.9: Cross section areas at location of impact for a plastic tube. It is here clear that the beam 

elements without surrounding shell structure cannot reproduce the correct radial response of 
the tube. Counterintuitively, the embedded pressure tube returns to a greater final area than 
the shell tube. 
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Fig.10: Pressure at end (normalized values), for plastic tube. All the simulation methods produce 
negative pressure, resulting from tube expansion, something that the test tube clearly lacks. 
The pressure wave in the test tube also have some damping that is not accounted for in the 
simulation models. Experimental data courtesy of Volvo Car Corporation. 

5.3 CPM revisited 
Since the particle volume in CPM is governed by the shell mid-surface, see Figure 5, the CPM 
simulations in previous sections gives too big cross section area. Thus, another approach is also 
tested, where an inner liner of weak thin shell elements is held in place with tied contacts, see Figure 
11. This method gives significantly higher pressures, as in the experimental data, and gives more 
negative pressure from the expanding tube, see Figure 12 and 13. For some strange reason, CPM 
here gives a higher stationary pressure (1.1E5 Pa instead of 1.013E5 Pa), and for comparison the 
difference is subtracted. 
 

 
Fig.11: An inner liner of weak thin shell elements is created to limit the particle domain for CPM. 

 

 
Fig.12: Comparison of pressures for elastic tube (normalized values). CPM now gives higher 

pressures and a more pronounced negative pressure for the tube expansion. 
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Fig.13: Comparison of pressures for plastic tube (normalized values). 

6 Conclusions and future work 
This paper presents the new keyword *DEFINE_PRESSURE_TUBE, designed to efficiently simulate  
pressure waves in a thin air-filled tube. The theory behind the keyword is based on a 1D acoustic 
approximation of the Euler equations, where the change in tube area acts as a source term for the 
pressure. Two different ways of modeling the tube are tested: beam elements with or without a 
surrounding shell structure. Validation against experimental data and simulations with the corpuscular 
particle method (CPM) shows that the 1D approximation fares well, at a fraction of the cost of CPM. 
However, both the 1D approximation and CPM need tuning to better capture experimental data. 
Future work includes validation with a tube embedded in foam, as well as improving the area 
estimation from the contact penetration. 
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