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Abstract 

Topology optimization for crashworthiness has been investigated during the last years, starting from 

methods based on linear elastic and static simulations [1] or so-called equivalent static loads (ESL) 

obtained by a single nonlinear crash simulation with a subsequent optimization loop based on the 

linear stiffness matrix and the corresponding sensitivities [2, 3]. Both methods do not consider material 

nonlinearities in their optimization process, which are essential for structural components designed for 

energy absorption, although it is well-known that plasticity and failure play an important role.   

 
As alternative, optimization methods have been proposed, which use fully nonlinear and dynamic 

crash simulations. The first method, presented for example in Patel’s PhD thesis, is based on a hybrid 

cellular automata approach (HCA) and derives optimal structures using a homogenized energy density 

approach where each finite element (cell) is modified until the highest degree of homogeneity is 

achieved [4, 5]. Because this is not fully appropriate for thin-walled structures, Hunkeler modified the 

approach (HCA-TWS – Hybrid Cellular Automata for Thin-walled Structures) such that deformation 

energy is only homogenized between larger structural entities (i.e. thin ribs / walls) [6, 7]. The most 

recent method, the EA-LSM, a combined level set method (LSM) and evolutionary approach, was then 

proposed by Bujny et al. where more appropriate objectives and constraints can be used with the 

drawback of higher computational costs [8, 9].  

 

In this paper, the latest results for HCA-TWS and EA-LSM will be presented, see also [10]. Special 

focus is here the investigation of the influence of different material models for plasticity. Examples are 

inspired by recent material model developments for magnesium alloys with a characteristic anisotropy 

in the plasticity model [11]. As a result, it is shown that the optimal topologies depend on the material 

model and that it is necessary to use nonlinear and dynamic finite elements for crash topology 

optimization. 

 

Keywords Crashworthiness, Nonlinear Topology Optimization, Hybrid Cellular Automata, Level Set 

Methods, Material Models, Plastic Anisotropy. 

 
 

1 Introduction and State of the Art 

Topology optimization is well-established in most areas of structural engineering. For crashworthiness, 

due to its high inherent nonlinearity, this is still not the case. Here, most published and probably also 

not published work have been based on linear elastic, static finite element methods (FEM) neglecting 

(i) all dynamic effects like rate dependency of the material behavior or inertia effects, (ii) material 

nonlinearities like plasticity and failure, and (iii) nonlinearities due to contact. Efforts to include dynamic 

behavior by considering a set of static loads to represent the different phases of the crash have helped 

slightly [1], but the drawback of linear material modeling remained. Neither plasticity with or without 

hardening nor failure have been integrated into these optimizations although it is well-known that 

optimal topologies differ when geometrical, contact, or material nonlinearities are important. This was 

already shown for non-crash cases and is even more important for crashworthiness. Fig. 1, for 

example, shows that the result of a topology optimization depends on material nonlinearities [12]. 
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Figure 1: Topology optimization results for a static case with linear and nonlinear material models, [12] 
  
In this example, structural ductility, defined as the integral of strain energy over a given range of a 

prescribed displacement, was taken as objective together with a mass constraint. At the beginning of 

the optimization, the design space was completely filled and the densities, i, of the finite elements 

(voxels) were used as design variables. Three functions, bj; j = 1…3, were defined, which depend on 

this density, to scale the elastic material tensor, the hardening modulus and the yield strength. Taking 

the idea of penalization established in the standard SIMP method (Solid Isotropic Microstructure with 

Penalty for intermediate densities), three parameters, i, were defined as exponents such that bj = 

(i/0)
i with 0 as initial density. This example is one of the first studies on the usage of plasticity for 

(static) topology optimization. It shows clearly the difficulty to consider advanced material models as 

required for crash analysis. Such a scaling of material parameters driven by only one parameter (here 

density) becomes challenging for more realistic material models than the linear hardening model used 

here; see also the more detailed discussion in [12]. These approaches use a high number of design 

variables, i.e. voxel elements, and a gradient-based optimization method, which is only feasible via 

sensitivities computed by adjoint methods. They cannot, at least currently, be applied to nonlinear and 

time-dependent crash analysis based on explicit FEM where gradients are difficult to calculate and 

adjoint methods not available. 

 
In addition, it is important here that a standard elasto-plastic material model was used (von Mises with 

linear, isotropic hardening), which assumes plastic incompressibility. This means that enclosed areas 

where the densities reach near-zero values still contribute strongly to the mechanical behavior not 

allowing plastic deformation related to volume change. To avoid this effect, it is necessary to eliminate 

these elements as shown in the left image of Fig. 2, see also [13].    

 

 
Figure 2: Element elimination to reduce the effect of plastic incompressibility (left) and illustration of 
the necessity to interpret volume element results as thin-walled shell structures (right), [13]  

 

Stress concentrations due to the resulting non-smooth (jagged) boundaries influence strongly the 

results, especially for crash, because the nonlinear buckling and post-buckling behavior is triggered by 
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these mesh-dependent quantities. The work published in [12] already addresses this problem; in the 

static examples discussed there, the influence of the jagged boundary can be neglected for elastic 

problems but is changing results drastically when plasticity is considered. A very fine mesh may be 

required to reduce these artificial effects. In [12], an adaptive strategy is proposed to overcome this 

problem based on isolines of one or more density levels (Fig. 3). This resembles ideas used in level 

set topology optimizations, which will be discussed more in detail below. Another issue is the required 

interpretation of the obtained optimal topologies based on three-dimensional voxels as a shell 

structure, see Fig. 3 (right). 

Figure 3: Adaptive strategy to avoid stress concentrations due to jagged geometry, [12] 
 

This chapter is meant to illustrate the motivation and the difficulties of crash topology optimization. It is 

not the purpose of the authors to give a complete overview of relevant literature. Hence, more 

information with focus on topology optimization considering plasticity can be found, e.g., in [14-19]. An 

overview of topology optimization for crashworthiness was already published by the authors [1, 20]. In 

the following part of this paper, results from two methods, the hybrid cellular automata method for thin-

walled structures (HCA-TWS) and the evolutionary level set method (EA-LSM) will be presented, both 

using truly nonlinear crash simulations with full nonlinearity. They illustrate the high influence of the 

material model for isotropic and anisotropic plasticity, this time for dynamic cases encountered in 

crashworthiness problems. The background theory of the two methods will be summarized first. 

  

2 Topology Optimization Methods using Nonlinear FEM (Explicit) 

2.1 Hybrid Cellular Automata for Thin-walled Structures (HCA-TWS)  

To the authors' knowledge, the use of cellular automata (CA) for topological design of structures was 

first published in 1994 [21] addressing local homogeneity of physical quantities. Later applications 

were extended to hybrid cellular automata (HCA) considering also global aspects from FEM [22]. 

Based on this, Patel introduced HCA for crash topology optimization of structures modeled with 

volume elements (voxels) using nonlinear FEM [4]. Hunkeler transferred this to thin-walled structures 

modeled with shell elements [6, 20]. The main difference of the latter to the other approaches is that 

cells are now defined by sets of multiple finite elements (shells), i.e. that the cells are not identical to 

the finite elements. This allows folding and buckling of thin-walled structures having inside of the cells 
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a non-homogeneous energy density distribution, which is essential for crashworthiness design. The 

approach was improved (higher stability and efficiency) and published in [10]. 

 

The general work flow is illustrated in Fig. 4 and discussed step-wise in the following. 

 

 

Initial design. The first step, the initialization, includes the definition of the initial values of the n design 

variables, x0i, i = 1 … n, and their lower and upper bounds, xLi and xUi. As variables, the thicknesses of 

the cell walls, ti, are taken. In addition, the mechanical model and the load case must be defined 

together with the walls and their neighborhoods. This resembles the definition of ground structures in 

other approaches, e.g. [23]. The walls are later optimized such that they have the same total 

deformation energy as the neighboring walls (homogenization via CA). This definition is crucial for the 

proposed method; it means that the derived optimal design depends on this initialization. The overall 

mass fraction objective, M
*, and the constraint(s), C, have to be defined as well. It should be noted 

here that current HCA algorithms are not fully flexible concerning the definition of arbitrary constraints. 

Here, further improvements are required. In the work presented here, a monotonic relationship 

between mass and constraint is assumed. 

Structural analysis (crash). In the outer loop, the model is evaluated via transient nonlinear FEM with 

explicit time integration (LS-DYNA). The current total mass, m(j), the states to be homogenized, Ui
(k), 

and the value of the constraint, C, are formulated and passed on. In the example, the total deformation 

energy of the cells (i.e. entire walls) is chosen for Ui
(k) and an intrusion constraint is taken as C.  

Target mass updating. The target mass fraction, Mf
(k), for the iteration step k is calculated via an a 

priori rule, which specifies if more or less mass reduces the constrained response. In case of 

constraining intrusion, more mass generally results in a reduction of intrusion and vice versa. Details 

on these rules are discussed in [6, 10, 20]. After this, the inner loop is started to derive the changes of 

the design variables in this step. 

Set point updating. As initial set point (first outer iteration), the average internal energy of the cells is 

taken. Otherwise, the value of the last iteration is considered together with the previous mass fraction 

and target mass fraction; details and especially a new algorithm based on bi-sectional search are 

presented in [10], which improves the algorithm strongly in case of a higher number of design 

variables.   

Figure 4: Workflow of the HCA for thin-walled structures with nonlinear, dynamic FEM [10] 
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Mass distribution. The inner loop changes the design variables, here the wall thicknesses, according 

to the set point and the target mass fraction. It does not require any FEM simulations and is therefore 

computationally very efficient. The update of the design variables is done iteratively controlled by a 

sequential change of the set point. The special update rules are also published in [10].  

Inner loop convergence and mass correction. The convergence of the inner loop is checked, i.e. it is 

controlled if the target mass fraction is reached. In case that elimination and re-introduction of cells is 

considered
1
, the mass has to be corrected [10].  

Outer loop convergence. The convergence (fulfillment of overall mass target) of the outer loop is 

checked and the optimization is either continued or terminated. The approach presented here drives 

the design normally to the constraint limit.  

 

2.2 Evolutionary Level Set Method (EA-LSM)  

 

Level set methods (LSM) are based on an implicit parameterization of geometry, i.e. the material 

boundaries, with a level set function and an additional computational domain (here FEM), e.g. [24]. 

Interfaces between different phases of material are defined by iso-contours of a level set function, Φ. 

As shown in Fig. 5, positive values of Φ define regions, Ω, occupied by material, negative values 

define void. The boundary Ω is described by the 0-th iso-contour. The optimization (shape and/or 

topology) varies this level set function and therefore the geometry and maps this information to a finite 

element mesh where it is evaluated. Normally, the changes are driven by gradient information 

originating from adjoint solvers or other advanced approaches; but this is not available in crash 

analyses using nonlinear, dynamic FEM (e.g. LS-DYNA). Adjoint solvers for explicit FEM do not exist 

and correct gradients are difficult to compute due to the intrinsic noise of the crash physics and/or 

numerical procedures. Hence, a non-gradient approach based on evolutionary strategies is proposed 

here, which was published for the first time in [25]. The principles of the approach are described below 

and details will be published in the near future [26]. 

Evolutionary strategies were developed independently of genetic algorithms in the 1970s by the 

research group of Rechenberg & Schwefel [27, 28]. They are mainly driven by mutation and are today 

very flexible and efficient because of their adaptation of strategy parameters (self-learning via CMA-

ES, Covariance Matrix Adaptation Evolution Strategy), e.g. [25]. Their potential for crash shape and 

size optimization was, for example, explored in the work on multi-disciplinary optimization for car 

bodies by the first author [29] using methods developed by DIVIS
2
.  

                                                      
1
 For example via SFE CONCEPT, www.homepage.sfe-group.org/en/products/sfe-concept 

2
 www.divis-gmbh.de  

Figure 5: Example of a level set function Φ (left) and the corresponding material domain Ω and 

boundary Ω for a two-dimensional design optimization problem [25] 
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Concerning the geometry representation, the work presented here is based on a level set function, 

which is a union of a set of local functions with a low number of free parameters. This is necessary to 

reduce the computational effort. Standard LSM do not need this because the gradient- and adjoint-

based approach can handle a high number of design variables; to the opinion of the authors, this 

cannot be applied directly to crashworthiness problems. One of the local level set functions is shown 

in Fig. 6; parameters are length, position, angle, and width (for a 2D design problem).   

 
Figure 6: Parameterization of an elementary structural component (left) and the corresponding level 
set function where negative values are set to zero (right), proposed in [30] 

  

3 Test Cases and Results 

3.1 Material models  

In this paper, first results for crash topology optimization using nonlinear and dynamic FEM are 

presented with a focus on the role of the plasticity model for the derived topologies. As discussed in 

the state-of-the-art part of this paper, there are only very few publications on nonlinear material 

topology optimization. Zhang et al. [19] give a good introduction into the topic based on SIMP. They 

used an anisotropic elasticity combined with an anisotropic plasticity model (Hoffmann yield function 

as generalized Hill yield function) with isotropic hardening and associated flow rule. Different yield 

strengths in tension and compression can be defined. This enables, in contrast to Hill, the 

consideration of not only pressure independent but also pressure dependent plasticity. Lower bounds 

for the interpolation of the plastic properties are higher than for elasticity to assure stability of the 

approach. As objective, the absorbed maximum plastic energy in the design domain is taken with a 

prescribed amount of material and displacement constraint. Sensitivities are obtained via an adjoint 

solver. The results motivate the study at hand and illustrate clearly the strong influence of the material 

model on the optimal geometries (in [19] only for static cases). For crash, advanced material models 

should be considered with elastic and plastic anisotropy as well as different yield for tension and 

compression. In fact, this should be extended such that failure is included, which is work currently 

under investigation by the authors. 

In the first case presented here, which explores the potential of HCA for crash topology optimization, 

material models offered by LS-DYNA and an advanced model by MATFEM
3
 are chosen based on 

[11]. Anisotropy is proposed, e.g., for magnesium wrought alloys with their hcp
4
 crystal structure 

showing plastic anisotropy at room temperature and strong asymmetry of yield locus and hardening 

under tension and compression. This is due to twinning depending on the actual stress state. The 

results are compared with those obtained by a standard von Mises model and a modified von Mises 

model (LS-DYNA, MAT 024, MAT 124). Results for the MATFEM model will be published elsewhere. 

                                                      
3
 www.matfem.de 

4
 hcp: hexagonal close packed 
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For the LSM examples shown in this paper, a simple material model (piecewise linear elastic-plastic 

material model) was chosen to establish the method. More advanced material models are currently 

investigated and will be published in the near future. 

3.2 Test cases: Beam under transversal impact 

Figure 7: Two sample problems for HCA method illustration [31] 

 
As example for the HCA, an extrusion beam is considered where the interior reinforcements modeled 

as ribs are optimized, see Fig. 7. Because these are the first results on this topic, an initial optimization 

was realized for a quasi-static case (3-point bending) corresponding to a pole impact. Two different 

Figure 9: Test case for LSM (left) with union of initial level set functions (right, top) and corresponding 
FEM mesh (left, bottom) [25] 

Figure 8: Validation problem for high speed impacts comparable to the case shown in Fig 7. 
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initial geometries are defined as shown in Fig.7. As high speed impact case with simpler material 

models, see also [6, 7, 10, 20], and without addressing explicitly the role of the material model, a 

beam under transverse impact is shown here, which is fixed at both ends, see Fig. 8.  

For the LSM, a beam under transverse impact is regarded without extrusion constraints in axial 

direction. Instead, the geometry was kept constant transverse to the beam axis, which makes the 

problem two-dimensional. More advanced parameterizations and optimizations will be published in the 

frame of ongoing PhD theses. The initial geometry is presented in Fig. 9.  

4 Results 

4.1 Results from HCA-TWS for Crash Topology Optimization 

As results for the HCA, the quasi-static case with HCA leads to different topologies depending on the 

chosen material model. Fig. 10 shows the results for the coarse problem with a relative low number of 

cell walls. The top row with the isotropic von Mises model (red) led to an optimum after ca. 16 

iterations (= inner loops); this means after only 16 FEM simulations. The bottom row shows a slightly 

different inner topology achieved after 14 iterations with slightly higher mass. 

 
Figure 8: HCA-TWS results for the coarse problem with two different material models [31] 
 
When a more refined inner ground structure is chosen, the results depicted in Fig. 11 are obtained 

showing stronger differences in the topology and the realized specific energy absorption (SEA, energy 

absorption to mass ratio). Again, the optimal results are obtained with a very low number of nonlinear 

crash simulations.  

The figures also show the degree of homogeneity, i.e. the similarity of the internal energy of 

neighboring walls taken as driving quantity for the HCA. This is not always appropriate, especially if 

the extrusion constraints are not included in the optimization definition. Then, it is questionable that all 

walls should have identical internal energy; the energy will be concentrated at impact location and 

support regions. This should be considered when HCA or HCA-TWS are used for crash topology 

optimization. To overcome this, a less global definition of homogeneity requirements may be helpful. 

This needs investigations in the future. The LSM approach does not have this issue; it is more flexible 

with the definition of objectives and constraints and can treat all types of problems. Main drawback is 

the higher numerical effort for the optimization. Several hundreds of nonlinear crash simulations are 

normally required and not only a very low number (often less than 50) as for HCA. 
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Figure 9: HCA-TWS results for the refined problem with two different material models [31] 
 
For the high speed case optimized by HCA (Fig. 8), the results are comparable to those of the quasi-

static case. Fig. 12 shows an exemplary optimal design obtained after 41 iterations (= nonlinear crash 

simulations). The mass is increased from initially 2.54 kg to 3.22 kg to drive the design into the 

feasible space (initial displacement constraint violation). Nevertheless, some walls are deleted with a 

threshold of 0.5 mm. 

 

 
Figure 10: Results for the HCA-TWS (high speed impact) with optimal design after 23 simulations  
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4.2 Results from EA-LSM for Crash Topology Optimization 

 
Figure 11: Result of EA-LSM optimization, FE geometry and von Mises stress (left) and convergence 
plot (intrusion minimization case with mass and symmetry constraints) [25] 

 
The LSM results are obtained using state-of-the-art Covariance Matrix Adaptation Strategy (CMA-ES) 

with a stopping criterion after 1000 generations. An offspring population of the size of 17 was 

generated from 8 parents. A comma strategy was used, i.e. selection was performed among offspring 

only, neglecting parents to handle noise in crash computations. The convergence plot (here averaged 

over 30 repeated optimizations to enable comparison of random-based algorithms) shows the main 

improvements are realized before the 100
th
 generation. In practical applications, the convergence is 

not essential and the quality of an algorithm is determined by fast improvements at the beginning of 

the optimization, see also [29]. Accepting the termination after 100 generations means that 1,700 

simulations are required here. This is high compared to the HCA, but the definition of objectives and 

constraints is more flexible and appropriate for the LSM, which may therefore in some cases be 

recommended.  

   

5 Summary 

In this paper, two new methods for crash topology optimization were presented, the Hybrid Cellular 

Automata approach for thin-walled structures (HCA-TWS) and the level set method using evolutionary 

algorithms (EA-LSM). Both have the advantage that they use nonlinear and dynamic crash simulations 

such that all aspects of explicit FEM modeling for crash can be included. First results show that the 

optimal topologies depend on the material model (here shown for plasticity). This means that it cannot 

be recommended to use methods based on linear FEM for optimizations of structures developed for 

energy absorption. The latter may be used for structures with low deformation requirements and not 

energy absorption objectives as used for the safety cell of vehicles. The HCA-TWS has the advantage 

to deliver results after a very low number of simulations, but it is restricted by the choice of 

constraint(s) and especially by the definition of the objective functions. More general, but more 

computationally expensive is the EA-LSM, which can treat all types or crash problems.  

Future work is necessary here to improve the methods, to explore further applications, and to study 

optimal topologies and their dependencies on more realistic and therefore complex material models. 

This is currently investigated by the authors and will be published in the future. 
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