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1 Introduction 
 
The Noise, Vibration, and Harshness (NVH) problem is one of the most important targets for comfort and quiet 
product design. Especially, in automobile industry, as the degrees of freedom of NVH  automobile FE model 
increases, from millions of degrees of freedom to tens of millions of degrees freedom, the computational time for 
NVH analysis becomes serious bottle neck in automobile design and analysis process. Therefore, it is desired to 
reduce the computational time of eigenvalue problem analysis, which is the most important part of NVH 
analysis. 
 
For several years LSDYNA has had a Block Shift and Invert Lanczos Eigensolver in both SMP and MPP 
implementations.  But this solver is deemed too expensive for computing the number of modes required for 
NVH applications.  In the early 2000s, the Automated Multi-Level Substructuring (AMLS) method was 
developed to reduce the computational costs of NVH analysis by the group at The University of Texas at Austin. 
As the AMLS method provides significant contributions on automobile NVH analysis, it becomes industry 
standard tool for NVH community. Therefore, many CAE software companies such as NASTRAN, ABAQUS, 
HyperWorks released similar feature which uses AMLS algorithm.  At LSTC, for efficient NVH analysis, we 
have been adding MCMS (Multi-level Component Mode Synthesis) method as an implementation of AMLS 
(Automated Multilevel Substructuring Method) for NVH applications that require thousands of eigenmodes 
quickly. 
 
MCMS generally produces approximate eigensolutions that are less accurate than those computed by Lanczos 
method, but the error can be tolerated in automobile NVH applications. The new MCMS method that 
significantly reduces the computation time for  frequency response analyses on complex structures such as 
automobiles, submarines and airplanes.  
 
 

2 Theoretical Background 
 
In vibration analysis, the finite element (FE) method solves equations of the form 
 

   (1) 

where [K], [C], and [M] are mass, damping, and stiffness matrices, respectively. From eq.(1), the The eigenvalue 
problem of the FE model is represented by 
 [ ][ ] [ ][ ][ ]K MΦ = Φ Λ   (2) 

The matrix [ ]Λ  is the diagonal matrix of eigenvalues, [ ]Φ  contains the corresponding eigenvectors and 

[ ] [ ][ ] [ ]T M IΦ Φ = , where [ ]I is an identity matrix. For many years LSDYNA has used the Block Shift and 
Invert Lanczos software, both in SMP and MPP, to solve the standard vibration analysis problem (2).  Lanczos 
assumes that K and M is symmetric positive semi-definite.   
 
In the late 1960s, Component Mode Synthesis (CMS) was introduced for reducing the size of a finite element 
model, particularly where many subsystems are connected. This method re-characterizes large finite element 
models into a set of relatively small matrices containing mass, stiffness and mode shape information that capture 
the fundamental low frequency modes of the structure. The Craig-Bampton method, which has been most 
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popularly used, combines the motion of boundary points with modes of the subsystem assuming the boundary 
points are held fixed. 
 
In the Craig-Bampton method, substructure 1 consists of interior and boundary degrees of freedom. At the next 
level, substructure 3 consists of the interface degrees of freedom between substructure 1 and substructure 2. The 
partitioning can be described in a tree topology shown in Fig.1. 
 

          
(a)                           (b) 

Fig.1: A plate FE model partitioned with Craig-Bampton method:  a single level tree topology 

 
Based on the partitioning, the stiffness and mass matrices of each substructure is reordered as 
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The substructure response on the lowest level is represented by the Craig-Bampton method as 
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where iΦ  is the eigenvector matrix of the following algebraic eigenvalue problem and 1
i ii ibK K−Ψ = − . 

 ii i ii i iK MΦ = Φ Λ   (6) 

Note that the eigenpairs are truncated according to user defined cutoff value.  
 
Once the transformation matrix [ ]T is obtained, the substructure stiffness and mass matrices are transformed to 
the reduced matrices [ ]CK and [ ]CM . 
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The key idea of Automatic Multi-Level Substructing (AMLS) method is a multi-level extension of Craig-
Bampton method. It reduces the full scale model using a recursive application of the Craig-Bampton approach to 
a smaller model. The recursion is based on the elimination tree for the sparse factorization of the stiffness matrix.  
Since the eigensolution is computed for each smaller substructure model, it requires far less computing resources 
than Lanczos on the full scale model.  
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In the MCMS method, based on the transformation process for a single level explained above, multi-level 
transformation is processed as follows. A FE model of plate shown in Fig.2 illustrates a partitioning of the plate 
into substructures in a two level. substructure 1 consists of interior and boundary degrees of freedom. At the next 
level, substructure 3 consists of the interface degrees of freedom between substructure 1 and substructure 2. The 
substructure 7 consists of the interface degrees of freedom that separate substructure 1, 2, 3 and substructure 4, 5, 
6. The partitioning can be shown in a tree topology in Fig.2. 
 

       
(a)                                  (b) 

Fig.2: A plate FE model partitioned with two level and the substructure tree topology 

 
The partitioning of the system matrices, K and M, becomes 
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For example, transformation matrix in Eq.(11) represents the transformation of the first substructure 1 and its 
ancestor substructure 3, 7. 
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Once all transformations for all substructures are finished, the transformed and reduced mass and stiffness 
matrices [ ]MK and [ ]MM can be represented as 
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where 1 2 7[ ] [ ][ ] [ ]T T T T=  is transformation matrix that contains substructure eigenvectors and the number of 
column is the total number of substructure eigenvectors. Once the MCMS transformation is finished, the global 
eigenvalue problem (2) can be transformed as 
 
 [ ][ ] [ ][ ][ ]M M M M MK MΦ = Φ Λ   (13) 

where [ ]MΛ is the diagonal matrix that contains eigenvalues for the reduced eigenvalue problem (13) and [ ]MΦ
is the matrix of its eigenvectors. The dimension of the reduced eigenvalue problem (13) is typically on the order 
of one hundred thousand, when the required eigenvector is over ten thousand for large scale FE model which has 
millions of degrees of freedom.   
 
Finally, the approximate global eigensolution can be obtained from 
  
  [ ] [ ][ ]MTΦ ≈ Φ , [ ] [ ]MΛ ≈ Λ  

 

3 Numerical Examples 
 

3.1 Fuel Tank FE model 
 
This model represents a fuel tank for an automobile.  It is comprised of 61.488 shell elements. 
 

 
Fig.3: Fuel tank FE model 

 

3.2 Bumper FE model 
 
This model represents a bumper for a passenger car and has 168,860 shell elements. 
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Fig.4: Passenger car bumper FE model 

 
 

3.3 Door FE model 
 
The door model represents a passenger car door using 484,588 shell elements.  A second smaller 
version of the door model uses 121566 shell elements. 
 

 
Fig.5: Passenger car door FE model 

 
 

3.4 Results 
For all of these test cases the new MCMS feature is computing the approximate eigenvalues correctly. 

 

 
Fig.6: Relative error of Eigenvalues computed using MCMS compared to Lanczos 



11th European LS-DYNA Conference 2017, Salzburg, Austria 
 
 

 
© 2017 Copyright by DYNAmore GmbH 

 
 
Figure 6 displays the relative difference for the first 400 eigenvalues computed using MCMS and 
Lanczos for the fuel tank model.  For the larger eigenvalues the relative error is approaching 2%.  The 
performance oft he MCMS implementation is still being enhanced in LSDYNA.  We hope to show 
performance results comparing MCMS with Lanczos during the conference. 
 
 

4 Summary 
This paper provides an overview of LSC effort to implement the MCMS in LSDYNA for the NVH 
applications.  We provide a motivation for the work and an overview of the theoretical background of 
the algorithm based on a recursive appllication of the Craig-Bampton Component Mode Synthesis 
algorithm. We briefly showed 3 test cases we are using in our development efforts.  And demonstrated 
the results we are getting.  We hope to present performance numbers comparing Lanczos and MCMS 
during the conference presentation. 
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