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1 Overview 
Implicit time steps in LS-DYNA require the solution of large, sparse systems of linear equations. The 
multifrontal method of Duff and Reid is a particularly attractive algorithm for directly solving such linear 
systems as it transforms the sparse matrix factorization into a hierarchy of dense matrix factorizations. 
The vast majority of the floating-point operations can be performed with calls to highly tuned BLAS3 
routines, and near peak throughput is expected. Such computations are performed today on clusters 
of multicore microprocessors. 
 
The computational complexity of factorization means it has historically been the bottleneck for implicit 
calculations, both in terms of the storage used as well as elapsed time. Because of its importance to 
LS-DYNA, research into how to improve multifrontal solvers is a continuous effort, and this paper 
discusses some of the recent highlights. Section 2 discusses the impact of changes in microprocessor 
architecture and the emergence of new technology for solid-state disks. Section 3 discusses how we 
are improving the performance of factorization on large-scale distributed memory systems.  Section 4 
describes research efforts into distributed reordering and Block Low-Rank approximation that should 
enable LS-DYNA to handle even larger implicit models in the near future. 
 

2 Adapting to computing system evolution  
The end of Dennard scaling has forced an end to microprocessor clock frequency scaling. 
Nevertheless, microprocessor vendors have continued to increase the peak arithmetic processing 
performance of individual processors by expanding their architectures to include single-
instruction/multiple-data (SIMD) function units. Intel’s Advanced Vector Extensions (AVX) allow one 
Pentium processor to retire four fused multiply-add operations per cycle, and even eight of them on 
the Xeon Phi. These SIMD operations are most effectively utilized by calling BLAS3 functions from 
mathematical libraries, such as Intel’s MKL, and LSTC’s multifrontal code now makes extensive use of 
the matrix-matrix multiplication (e.g., DGEMM) and triangular solve (e.g., DTRSM) routines. 
 
Unfortunately, the performance of standard Fortran and C code has plateaued along with the clock 
frequency. Therefore, small overheads that used to seem irrelevant when compared with the time 
invested in dense matrix arithmetic kernels are increasingly visible. For example, if a symmetric matrix 
is stored as a triangle, then accumulating the output of a matrix-matrix multiplication which was 
performed by DGEMM requires reformatting the output from a rectilinear array, to a trianglur one. For 
problems derived from shell elements, this could take as much as 5% of the runtime of sparse matrix 
factorization. We are addressing such problems by revisiting our arithmetic kernels, and doing things 
like opportunistically storing symmetric matrices as full ones, when storage is available. This allows 
operations like DGEMM to be performed in place, reducing unnecessary data movement. 
 
New memory technology is being brought to market, and of particular interest is the 3D XPoint (3DX) 
technology recently announced by Intel and Micron. This is a persistent memory that is cheaper and 
denser than DRAM and faster than FLASH, though more expensive. Intel is initially bringing it to 
market as a faster solid-state disk (SSD). As depicted below in Figure 1, the impact on the 
performance of the linear solver when operating out-of-core is dramatic. Normally, the triangular 
solves are starved for bandwidth, and when out-of-core can approach the factorization’s elapsed time 
(top row), even though they do orders-of-magnitude less arithmetic work. With the new 3DX SSD, they 
perform almost as if in-core (bottom row). Given the relative cost of DRAM versus the new SSDs, 
users may wish to rethink how they configure their computing systems. 
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Figure 1: Performance impact of 3DX SSD on LS-DYNA implicit running out-of-core. 

From top to bottom: Hard disk, FLASH SSD, 3DX SSD, FLASH RAID, 3DX RAID 
 

 
Figure 2: Elimination tree for a one million element NCAC Chevy Silverado model. 
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3 Processor scaling  
LSTC has been using distributed memory versions of the multifrontal method since the introduction of 
scalable implicit processing at the turn of the century. The multifrontal method turns a sparse matrix 
factorization into a tree of dense factorizations. Figure 2 (above) depicts such a tree, derived from a 
model of a Chevrolet Silverado pickup truck. Each circle represents a dense frontal matrix, and is 
scaled to reflect the relative amount of arithmetic worked needed to factor it. We use a subtree-
subcube technique to distribute the branches of our elimination tree to different processors. Near the 
root of the tree, where there are more processors than branches, multiple processors are assigned to 
the factorization of each of the individual frontal matrix. 
 
When the code for the distributed frontal matrices was first written, large-scale implicit users had O(10) 
processors. Designing to scale well to 32 seemed to provide plenty of head room for future growth. 
Cleve Moler knew in the mid-1980s that distributing the matrix by columns could scale to 100 
processors. Furthermore, this panel-based (1D) distribution localizes evaluation of the ratio of each 
diagonal value to its off-diagonals, which is needed to determine if pivoting is required.  Therefore, 
LSTC has been using 1D distributed frontal matrices for nearly two decades. Even for jobs with over 
100 processors, where performance could tail off for the frontal matrices near the root of the tree, their 
children or grandchildren would benefit from additional processors, and the overall factorization would 
speed up. 
 
Today, given the exponential growth in the number of cores that we are experiencing, LS-DYNA jobs 
are now running on thousands of cores. To enable sparse matrix factorization to continue to scale, 
LSTC has had to add a new generation of tiled, or 2D, frontal matrices. The processors are organized 
into a N by M Cartesian grid, where N*M is less than, or equal to, the number of processors assigned 
to the 2D frontal matrix. When the factored pivot columns are distributed, there are N simultaneous 
MPI broadcasts, each amongst M processors. Each of these broadcasts transmits 1/N the amount of 
data a 1D broadcast would convey. A down side is that pivot rows also have to be broadcast, but 
surprisingly, the 2D factorization kernel can be faster than the 1D kernel on as few as 8 processors, a 
2 by 4 grid. Figures 3 and 4 depict the relative performance of 1D versus 2D kernels factoring a 
simulated symmetric frontal matrix on a large-scale Cray XC40 system. 
 
 

 
Figure 3: Scaling of a panel-based (1D) symmetric factorization kernel on a Cray XC40 

GFlop/s (Y) vs. dense matrix rank (X) on varying numbers of processors 
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Figure 4: Scaling of a tile-based (2D) symmetric factorization kernel on a Cray XC40 

GFlop/s (Y) vs. dense matrix rank (X) on varying numbers of processors 
 

4 Towards larger models  
 
LS-DYNA users are creating ever-larger models, and in today’s computing environment, that requires 
increasing numbers of processors to store and process them. LSTC’s multifrontal solver was originally 
written over two decades ago to run on Cray mainframes. On such machines, reordering to reduce the 
size and operation count needed for factorization was a modest overhead, O(1%) of the total run time. 
Now, with as few as a dozen AVX-accelerated processors, reordering can be the bottleneck, both in 
terms of time elapsed as well as the memory required on any one processor.  
 

 
Figure 5: Nested dissection of a dummy engine model supplied by Rolls Royce 

 
The first step towards fixing this is to develop a new scalable algorithm for graph partitioning, the heart 
of a nested dissection reordering. This was presented at the 2016 LS-DYNA User’s Conference, and 
LSTC has developed it into a new distributed memory, nested dissection heuristic. This new 
reordering code has been integrated into LS-DYNA and is undergoing testing. Figure 5 depicts its 
results when applied to a dummy engine model created by Rolls Royce. This model has almost 200 
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million equations, and the reordering was performed on a 8-node, 128-core, Linux cluster. The 
successful deployment of a scalable reordering function is the first step towards eliminating the last 
vestiges of the sequential bottleneck in LSTC’s symbolic preprocessing. 
 
Of course, an effective parallel ordering will enable even larger implicit models to be solved, and there 
is no limit to the imagination of LS-DYNA users, and the size and complexity of the analyses they 
need to perform. Unfortunately, sparse matrix factorization scales superlinearly, both in terms of 
memory and operations. This scaling threatens to be a constraint on the ability of LS-DYNA users to 
achieve their objectives.  
 
One way to address this is to replace blocks of coefficients within the factors with low-rank 
approximations (block low-rank approximations, or BLR).  These low-rank approximations are created 
using rank-revealing QR factorization. BLR introduces error into the factorization, and we can bound 
its magnitude for any particular block being compressed. This is an idea that we have explored in the 
past, and dismissed. However, as models get bigger and research improves the algorithms, we think it 
is time to revisit that decision. To facilitate this work, LSTC joined the MUMPS consortium. We have 
added BLR to our multifrontal code (sequential only to date), and are using it to evaluate matrix 
compression and the overall impact that the error it introduces has on finite element models. We are 
also in the process of extending it to save operations, as well as storage. 
 
Figure 6 illustrates the impact of BLR on the solution of four implicit models, as a function of the 
amount of error tolerated in the low-rank approximations. The accuracy of the solution (and indirectly 
the convergence speed of the underlying non-linear process) can be controlled directly by the user 
through an explicit numerical parameter called the low-rank threshold. Increasing the threshold 
decreases the accuracy of the solution and increases the memory savings. Early results, depicted in 
Figure 6, show that the memory footprint of the factorization can be substantially decreased, while 
preserving a convergence rate close to the full-rank case. The optimal choice is a trade-off between 
the two and can be problem dependent, which is both an inconvenience and an advantage, since it 
provides more control over the numerical behavior of the solver and more flexibility. 
 

 
Figure 6: Initial study of the impact of BLR on the size and fidelity of implicit models. 
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5 Summary 
LSTC and its partners, including Cray and Intel, are continuously improving LS-DYNA, and adding 
new capabilities. We are also adapting to changes in the computing platforms available to our users. 
This talk highlighted three examples of this process, applied to multifrontal linear solvers. We have 
modified to code to exploit new technology such as SIMD arithmetic processing units, and 
demonstrated significant performance improvements, both in and out-of-core. We have developed a 
new 2D frontal matrix factorization kernel that exploits MPI Cartesian meshes to reduce 
communication overheads and improve load balance. We are deploying a new distributed reordering 
algorithm that will reduce our peak memory requirement, allowing larger implicit models. And finally, 
we are reconsidering the utility of block low-rank approximations, which offer the promise substantial 
reductions in the storage and operations required to solve a sparse linear system of equations. 
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