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Figure 1 High order elements tend to alleviate spurious shear deformation in bending, for pure bending the shear 
is exactly zero in the center of the elements. The latter observation is taken advantage of in the 6-noded shell. 

1 Introduction 
High order elements have always been of interest in linear finite element analysis. The primary reason 
is that mesh convergence rate is proportional to the polynomial order of the isoparametric shape 
functions used, see for instance Hughes [2]. An intuitive understanding can be obtained through the 
illustration in Figure 1; basically the deformation space of low order elements is restricted to the extent 
that pure bending will inevitably induce spurious transverse shear and result in a locking phenomenon. 
Even though this anomaly is present in high order elements, the effect is significantly reduced with 
increasing polynomial order. 
 
For decades, LS-DYNA [1] was developed with sole emphasis on explicit dynamic analyses. 
Computational efficiency of the involved model features, element formulations in particular, has 
therefore been of uttermost importance. In this context, the compromise between efficiency and 
accuracy has made low order elements the preferred choice while high order elements have been 
pushed down the priority list. The last few years, owing to a number of factors including the desire for 
more accuracy, improved computer technology, and an increasing use of implicit analysis, tables have 
turned. Users are more open to pay the price of longer simulation times with better results in return. 
This is true not only for implicit analysis; in explicit crash, high order elements may be required to 
capture the stress response necessary for assessing failure of critical components. 
 
The present paper has focus on implicit analysis of high order shells and solids, with the intention to 
give an overview of the current state of the LS-DYNA capabilities in this area. Sections 2 and 3 
provide theories of high order shells and solids, respectively, together with some examples and 
discussion. In Section 4, a description of the consistent contact treatment is given, according to the 
implementation of the Mortar contact in LS-DYNA, and the paper ends with a summary and outlook in 
Section 5. 

Spurious shear Shear negligable 
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2 Quadratic Shells 

 
Figure 2 Quadratic quadrilateral and triangle, including a virtual node for contact (𝑛𝑛9). Membrane and transverse 
shear integration points for the 6-noded shell are indicated. 

2.1 Theory 
The quadratic quadrilateral and triangular elements in LS-DYNA are of serendipity type and illustrated 
in Figure 2. In the following, Section 2.1.1 pertains to both shell types, whereas Section 2.1.2 largely 
follows the MB6 formulation in [3] and is only implemented for the 6-noded shell and implicit. 

2.1.1 Isoparametric representation 

The shape functions 𝑁𝑁𝐼𝐼, 𝐼𝐼 = 1,2, . . ,𝑛𝑛, are standard, where 𝑛𝑛 = 6 for the triangle and 𝑛𝑛 = 8 for the 
quadrilateral, and the isoparametric representation is given as (sum over 𝐼𝐼) 
 

𝒙𝒙 = 𝒙𝒙𝐼𝐼𝑁𝑁𝐼𝐼(𝜉𝜉, 𝜂𝜂) + 𝜁𝜁
𝑡𝑡
2
𝒏𝒏(𝜉𝜉, 𝜂𝜂), 

 
where 𝒙𝒙𝐼𝐼 are the nodal coordinates and 𝑡𝑡 is the thickness of the shell (assumed constant). The normal 
to the shell at any point is given as 𝒏𝒏 = 𝒎𝒎/|𝒎𝒎| where 
 

𝒎𝒎 =
𝜕𝜕𝒙𝒙
𝜕𝜕𝜉𝜉

×
𝜕𝜕𝒙𝒙
𝜕𝜕𝜂𝜂

 

 
at 𝜁𝜁=0. Following a standard procedure, the velocity gradient in local coordinates can be expressed as 
 

𝜕𝜕𝒗𝒗
𝜕𝜕𝒙𝒙

= �
𝜕𝜕𝒗𝒗
𝜕𝜕𝒙𝒙𝛼𝛼

𝜕𝜕𝒗𝒗
𝜕𝜕𝜕𝜕
� 

 
and 

𝜕𝜕𝒗𝒗
𝜕𝜕𝒙𝒙𝛼𝛼

= 𝒗𝒗𝐼𝐼
𝜕𝜕𝑁𝑁𝐼𝐼
𝜕𝜕𝒙𝒙𝛼𝛼

+ 𝜕𝜕 ��𝝎𝝎𝐼𝐼
𝜕𝜕𝑁𝑁𝐼𝐼
𝜕𝜕𝒙𝒙𝛼𝛼

� × 𝒏𝒏 + (𝝎𝝎𝐼𝐼𝑁𝑁𝐼𝐼) ×
𝜕𝜕𝒏𝒏
𝜕𝜕𝒙𝒙𝛼𝛼

� 

 

    
𝜕𝜕𝒗𝒗
𝜕𝜕𝜕𝜕

= (𝝎𝝎𝐼𝐼𝑁𝑁𝐼𝐼) × 𝒏𝒏 
 
where 𝒗𝒗𝐼𝐼 and 𝝎𝝎𝐼𝐼 are the nodal translational and rotational velocities, respectively, and the subscript 𝛼𝛼 
indicates the in-plane coordinates. 

2.1.2 Membrane and transverse shear locking 

According to Martin et.al. [3], even quadratic shells suffer from membrane and transverse shear 
locking, and they present approaches to overcome these deficiencies. 
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For the membrane locking they substitute the membrane part of the strain-displacement matrix 𝑩𝑩𝑖𝑖, 
𝑖𝑖 = 1,2,3, for  
 

𝑩𝑩�𝑖𝑖 = � 𝑤𝑤𝑗𝑗𝑩𝑩𝑗𝑗
3

𝑗𝑗=1
+ 𝑩𝑩𝑖𝑖

∗ −
1
3
� 𝑩𝑩𝑗𝑗∗

3

𝑗𝑗=1
 

 
where 𝑩𝑩1∗ , 𝑩𝑩2

∗  and 𝑩𝑩3
∗  are the membrane strain-displacement matrices of the flat triangles between 

nodes {𝑛𝑛1,𝑛𝑛4,𝑛𝑛6},  {𝑛𝑛2,𝑛𝑛5,𝑛𝑛4} and {𝑛𝑛3,𝑛𝑛6,𝑛𝑛5}, respectively, and 𝑤𝑤𝑖𝑖 , 𝑖𝑖 = 1,2,3, are the integration point 
weights. 
 
To alleviate shear locking, they derive an assumed transverse shear strain field for which the details 
can be found in [3]. Unfortunately, this rather complex approach left us with a singular deformation 
mode that could not be reconciled, whence a simple and intuitive idea based on ANS (assumed 
natural strain) was employed. Referring to Figure 1 and Figure 2, the transverse shear strains are 
evaluated at the edges of the mid sub-triangle instead of at the standard Gauss point locations. The 
reason is primarily because this is a location where the direction of shell normal and through-thickness 
fiber coincide for pure bending and should therefore suppress spurious shear strains.  
 

 
Figure 3 The Scordelis-Lo roof. 

2.2 Scordelis-Lo roof 
The Scordelis-Lo roof, see Figure 3 for the definition, is a standard test example for validating a shell 
element implementation, named after the authors who invented it. A uniform gravity load should cause 
a 0.3024 𝑚𝑚 deflection of the mid-point of the free edge, and this example can be used to the assess 
the mesh convergence in linear implicit analysis. From [3], and our own observations, it is primarily the 
spurious membrane strain for curved geometries that prevents the roof from deflecting. The results in 
Figure 4 show that the attempt for alleviating this locking phenomenon has a positive impact of the 
overall mesh convergence1. The modification of transverse shear strain has a negligible influence of 
these results, but our next example will show the importance of that contribution. 

2.3 Three Point Bending 
To assess the shear locking, an elastic-plastic bending of a front bumper beam was conducted as 
shown in Figure 5. Five different meshes, using roughly the same number of nodes, for the beam was 
used; a low order quadrilateral mesh (type 16 shell), a low order triangular mesh (type 4 shell), a high 
order quadrilateral mesh (type 23 shell) and two high order triangular meshes (type 24 shell). The two 
triangle meshes used a straightforward isoparametric formulation and one with the attempt to alleviate 
locking phenomena. The resulting contact forces are shown in Figure 6. 
                                                      
1 It should be mentioned that the results in [3] are much better, but we were not able to achieve those. 
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Figure 4 Mesh convergence for the Scordel-Lo roof, comparing the isoparametric approach vs alleviation of 
membrane  and  shear locking. 

 
Figure 5 3-point bending of a bumper beam. 

 

 
Figure 6 Contact forces for bumper beam example. 

Even though it is hard to observe from the figure, the following can be noted from inspection. The 
initial stiffness (elastic) of the beam is considerably higher for low order triangle (curve B) and the high 
order triangle without any special treatment (curve D). The other are comparable, except for the high 
order quadrilateral being somewhat softer (curve C). The same can be said for the peak load, curves 
B and D stands out while the others are of the same magnitude. The residual force differs among all 
elements, and the high order triangle with locking treatment has the lowest force (curve E), followed by 
the high order quadrilateral (curve D). The other triangles are giving the stiffest response. This, 
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together with further observations from other runs, indicate that the locking treatment of the high order 
triangle is indeed providing a response that is comparable to that of quadrilateral shell elements. 

 
Figure 7 Quadratic hexahedron, pentahedron and tetrahedron, node numbers omitted. 

3 Quadratic Solids 
There are in principle two families2 of quadratic solid elements, a serendipity family and a fully 
integrated family. The families are illustrated in Figure 7, where serendipity elements have corner and 
side nodes while the fully integrated family also have face and body nodes. Only the visible nodes are 
shown in the picture, out of which the face nodes are indicated by circles. Currently the serendipity 
pentahedron does not exist in LS-DYNA but needs to be added to complete the family, whence we 
focus on the fully integrated elements in the following. 

3.1 The 𝑩𝑩�-approach 
Most of the quadratic solids are iso-parametric elements adopting the conventional second order 
shape functions, the exception is the 27-noded solid element which is equipped with a 𝐵𝐵�  (B-bar) 
method to reduce volumetric locking. Following Hughes [2], the dilatational terms of the strain-
displacement matrix 𝑩𝑩𝐼𝐼, 𝐼𝐼 = 1,2, … ,27, are interpolated as 
 

𝑩𝑩�𝐼𝐼 = 𝑁𝑁𝐽𝐽𝑩𝑩�𝐽𝐽𝐼𝐼 
 
with 𝑩𝑩�𝐽𝐽𝐼𝐼 obtained by the projection 
 

�𝑁𝑁𝐼𝐼𝑁𝑁𝐽𝐽𝑑𝑑𝑑𝑑 𝑩𝑩�𝐽𝐽𝐽𝐽 = �𝑁𝑁𝐼𝐼𝑩𝑩𝐽𝐽𝑑𝑑𝑑𝑑 

 
and integrals are over the element domain 𝑑𝑑. The projection needs to be explained further; the 
element itself has 27 integration points, but the integrals in the projection is performed using a 
Gaussian quadrature of only 8 integration points. This is the key to alleviate the locking tendencies. 
 
The one unattractive aspect of this approach is the cost of forming and solving the projection 
equations. The matrix 𝑴𝑴, represented by its components 𝑀𝑀𝐼𝐼𝐽𝐽 = ∫𝑁𝑁𝐼𝐼𝑁𝑁𝐽𝐽𝑑𝑑𝑑𝑑, depends on the geometry of 
the element and thus needs to be recalculated and factorized each time the geometry changes. For 
incompressible deformation, however, 𝑴𝑴 can be assumed constant and the resulting 𝑩𝑩�𝐼𝐼 matrix is 
conveniently expressed as 
 

𝑩𝑩�𝐼𝐼 = 𝑁𝑁𝐽𝐽𝑀𝑀𝐽𝐽𝐽𝐽
−1 �𝑁𝑁𝐽𝐽𝑩𝑩𝐼𝐼𝑑𝑑𝑑𝑑 

 
where 𝑀𝑀𝐽𝐽𝐽𝐽

−1 now are the components the inverted initial projection matrix, which allows for a more 
efficient implementation scheme. The latter integral is also simplified to be with respect to the initial 

                                                      
2 A familiy consists of a hexahedron, a pentahedron and a tetrahedron. 

Solid ?/25 Solid 23/24 Solid 16/26 
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configuration to avoid the dependency of the jacobian. Thus, in the context of numerical integration, 
the expression for 𝑩𝑩�𝐼𝐼 reads 
 

𝑩𝑩�𝐼𝐼(𝝃𝝃𝑖𝑖) ≈ 𝑁𝑁𝐽𝐽(𝝃𝝃𝑖𝑖)𝑀𝑀𝐽𝐽𝐽𝐽
−1� 𝑁𝑁𝐽𝐽�𝝃𝝃𝑗𝑗�𝑩𝑩𝐼𝐼�𝝃𝝃𝑗𝑗�𝑑𝑑0

𝑗𝑗
8

𝑗𝑗=1
= � 𝑤𝑤𝑖𝑖𝑗𝑗𝑩𝑩𝐼𝐼�𝝃𝝃𝑗𝑗�

8

𝑗𝑗=1
,    𝑖𝑖 = 1,2, … ,27 

 
where 𝑤𝑤𝑖𝑖𝑗𝑗 can be interpreted as extrapolation weights from the reduced integration points to the full 
integration points. The incompressibility assumption makes sense, since this is the justification for the 
𝐵𝐵�  method in the first place. For compressible materials, the 𝐵𝐵�  method can and should probably be 
avoided. 

 
Figure 8 Initial and final configuration of foam block. 

3.2 Indentation of a foam block 
As a first indication of the response of quadratic solids, consider the indentation of a foam block as 
illustrated in Figure 8. The bottom of the block is entirely fixed as an indenter compresses the block a 
fair amount. The material used is a simple Fu-Chang foam without any rate or hysteresis effects and a 
compression curve giving the foam its characteristic properties. Figure 9 shows the input curve 
together with an indication of the different deformation phases. 
 

 
Figure 9 Input (compressive nominal) stress vs strain curve (top) and resulting reaction force of the indenter 
(bottom). 

This material is highly compressible, whence the 𝐵𝐵�  method is not applied but all elements are fully 
integrated. Five simulations were conducted with the elements in the foam consisting of solid element 

Element Force 
2 3.70 
10 4.25 
24 3.51 
25 3.54 
26 3.96 
 

Compaction phase 
 
Energy absorption phase 
 
Initial linear in compression 
 
Linear in tension 
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types 2 (fully integrated linear hexahedron), 10 (linear tetrahedron), 24 (fully integrated quadratic 
hexahedron), 25 (fully integrated pentahedron) and 26 (fully integrated tetrahedron). The mesh for the 
different inputs were targeted to make the number of nodes approximately the same, realized by using 
twice as many elements along each side of the foam block for the linear element inputs. The resulting 
reaction force curves are shown in Figure 9 together with a table with the final force values. Without 
drawing definite conclusions, it appears that the quadratic elements tend to be generally softer and the 
tetrahedral elements suffer from a stiffer response, although the differences are probably statistically 
insignificant. 
 
Table 1 Statistics from nonlinear implicit solver for the foam test. 

Element Simulation time Number of iterations Number of residuals 
2 672 348 1481 
10 414 209 704 
24 894 364 1507 
25 723 258 950 
26 982 367 1638 
 
 
A full Newton method was used to solve the problems in approximately 50 steps; no retries were 
reported except for once in the solid element 2 simulation. Some statistics are shown in Table 1, that 
indicates an overall similar performance. Worth mentioning is that the global stiffness matrix for high 
order elements has a larger bandwidth for the same number of degrees of freedom, which will affect 
the time for solving the linear systems of equations, which may explain the lack of correlation between 
the simulation time and the number of iterations/residual evaluations. 

 
Figure 10 Deep draw, quarter model. 

3.3 Deep Draw 
A final example is the deep draw depicted in Figure 10. The setup is simple, a circular thin sheet is 
used with an isotropic elastic plastic material. Four different element types were used for the blank; the 
fully integrated quadratic solid element (type 24) with one element through the thickness, a linear solid 
element (type -2) with two elements through the thickness, the quadratic triangular shell (type 24 with 
locking treatment) and a low order quadrilateral shell (type 16). All different configurations use roughly 
the same number of nodes in the plane of the sheet to render an approximate similarity in model size. 
The solid elements have an aspect ratio of 1:5 and the results will be an indication of the 
consequences of modelling thin structures with high order solids, and also of using few elements 
through the thickness. The shell elements were included for contributing to the general discussion of 
results. 
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Table 2 Statistics from nonlinear solver for the deep draw. 

Element Number of stiffness 
ref. 

Number of iterations Number of residuals 

Solid 24 460 4545 30957 
Solid -2 138 2270 9376 
Shell 24 118 1863 6597 
Shell 16 62 1582 3568 
 
 
In Figure 11 the punch force is shown, from which it seems that the shell elements provide a 
somewhat softer compared to the solid counterparts. No significant difference between the two solid 
elements, as between the two shell elements, is observed. The maximum plastic strain is between 
43% and 44% in all simulations. From Table 2 we see that the high order solid is not converging at a 
plausible rate when compared to the other elements, which may be something to address in the 
future. A good explanation to this behaviour cannot be provided at the moment. 

 
Figure 11 Punch force for the different setups. 

 
Figure 12 Segment partitioning of contact segments for contact kinematics, 8/9 noded segment, 6 noded segment 
and 7 noded segment, respectively. 

4 Contacts 
For contact between high order segments, or low order segments for that matter, the treatment should 
incorporate the underlying shape functions to yield nodal force consistency. For the Mortar contact, all 
linear and quadratic elements are accounted for in the sense of the following brief outline. 

Child Segments 

Mother Segments 
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4.1 Kinematics 
Obviously surfaces of high order elements are in general curved, which should be accounted for when 
computing the kinematics (i.e., the penetration and sliding) for the contact. For a segment to segment 
contact such as Mortar, the complexity and presumable cost to actually calculate and process the 
penetrated surface has lead us to take a simplified approach. To this end, a high order mother-
segment are divided into 3 or 4 low order child-segments according to Figure 12. For 8 noded 
segments, i.e., those segments associated with the serendipity hexahedrals and quadrilaterals, a 
virtual node is created at the isoparametric center of the segment to aid in creating the 4 child-
segments in this special case. This node is indicated by a circle in the figure. Then pairs of child-
segments are used for computing the penetration field, and thus some second order geometry 
information is lost in the process.  

4.2 Kinetics 
The contact stress is evaluated according to the constitutive law for the contact, usually a standard 
Coulomb friction law, after which the virtual work principle is used to distribute the nodal forces. Here 
contact stress on a child-segment will result in nodal forces on all nodes of the mother segment. This 
will provide a correct nodal force distribution for a flat geometry, while the loss in accuracy for a curved 
geometry is hopefully compensated by increased efficiency and facilitated code maintenance. 
Furthermore, considering future development, incorporating cubic and isogeometric elements into the 
scheme becomes less complicated. 

5 Summary 
An overall trend in simulation technology is towards increasing the accuracy of model features to yield 
a more rapid convergence with mesh refinement. In the context of element technology, migrating from 
shells to solids or from low to high order elements are possible ways to accomplish this. This is 
particularly true for implicit analysis, where spatial discretization is limited by algorithmic complexity 
and memory consumption. Sometimes simulation standards and company regulations even make 
quadratic elements mandatory, and by tradition they are an important contribution to an implicit finite 
element software. 
 
This has been a surficial overview of the quadratic elements available in LS-DYNA, with emphasis on 
implicit analysis. The element library is fairly complete, with the exception of a missing serendipity 
pentahedron which is expected to be added in the future. As shown in the examples, the available 
elements deliver what is promised; a response that is less prone to the known locking anomalies in 
finite element theory. Worth mentioning is the introduction of a new high order triangle that appear 
comparable to that of low order quadrilaterals, and that will become available in version R11. 
Regarding the overall implicit performance, this is the first study of its kind and results indicate good 
hopes for the future use of these elements. 
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