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Abstract 

The advent of isogeometric analysis (IGA) opened new horizons for reducing design and optimization 
costs. By employing the same mathematical formulation to describe CAD and simulation models, IGA 
integrates design and analysis into a new paradigm. Our work is part of a technology validation effort 
that aims to assess IGA for the analysis of impacts. 
 
Case studies of (i) wave propagation, (ii) material model calibration and (iii) ballistic impact are being 
conducted to compare the finite element analysis (FEA) against IGA. These case studies underpin the 
analysis of turbine fan blades and their containment casing (Figure 1). The IGA element formulation 
results more expensive than traditional FEA; however, it captures travelling stress waves more 
accurately. This improves significantly our ability to predict the dynamic response of systems, for 
example, undergoing high strain-rate loadings. Unfortunately, the mathematical formulation which 
makes IGA more accurate, does not allow discontinuities in the displacement field. This prevents, for 
example, a projectile to penetrate a target plate. It is argued that the physical failure can be predicted 
by using material models combining strain-rate-sensitive failure criteria.  
 
This work uses a plug-in for LS-DYNA to generate analysis-ready CAD models, and the LS-DYNA 
parallel computing capabilities for assessing the applicability of IGA in impact problems. 

 

Fig.1: Isogeometric analysis-ready CAD models. 

1 Introduction 

Isogeometric analysis (IGA) was introduced with the primary goal of enabling Computer Aided Design 
(CAD) engineers and numerical analysts to work on the same geometry [1]. Indeed, IGA aims to 
circumvent one of the biggest limitation of the finite element analysis (FEA), that is, FEA can only 
approximate CAD geometries. This approximation limits the modelling fidelity, for example, in contact 
mechanics problems [7]. 
 
Moreover, IGA can reduce the costs of meshing and re-meshing with respect to FEA. In fact, IGA imports 
a coarse mesh from CAD into the analysis environment without changing the geometry. Afterwards, the 
mesh can be easily refined on-the-fly during the analysis. 
 
There are however barriers to the applicability of IGA.  Firstly, the behaviour of IGA solid elements is 
not well understood. Secondly, modern CAD models are collections of surfaces and thus not suitable 
for analysis of solid structures. It is mainly for these reasons that, to date, IGA has limited industrial 
applications. 
 
This study aims to assess, and possibly expand, the applicability of IGA to mechanical problems 
involving complex geometries, failure and large models.   



11th European LS-DYNA Conference 2017, Salzburg, Austria 
 

 

 
© 2017 Copyright by DYNAmore GmbH 

We develop a methodology for generating analysis-ready CAD models and use these for simulations of 
stress wave propagation and impact problems on solid structures. We use LS-DYNA because of its 
capability to run IGA simulations on Massively Parallel Processing (MPP).  
 
Two test cases comparing IGA and FEA are presented: uni-axial pulse in cylindrical solid rod and 
ballistic test on titanium plate. The former provides insight on the accuracy of IGA for stress wave 
analysis, the latter tests the ability of IGA to predict failure and the ballistic limit of the target (i.e. the 
threshold velocity for which penetration occurs). 

2 Method 

2.1 NURBS-based isogeometric analysis 

In order to have a unique geometry for both environments, CAD and analysis, a unique mathematical 
formulation describing the model must be chosen. Most modern CAD packages rely on non-uniform 
rational B-splines (NURBS) to discretize mechanical components. Therefore, a natural choice for IGA 
is to use NURBS in its isoparametric formulation. 
 
A NURBS is a piecewise rational spline that can efficiently represent complex geometries and conics 
(e.g. circles and ellipses). The simplest NURBS object in 𝑅𝑛 is the curve 𝑪(𝑢) of order 𝑝 defined as:  

𝑪(𝑢) =
∑ 𝑤𝑖𝑁𝑖,𝑝(𝑢)𝑃𝑖  𝑚

𝑖=0

∑ 𝑤𝑖𝑁𝑖,𝑝(𝑢)  𝑚
𝑖=0

= ∑ 𝑅𝑖,𝑝(𝑢)𝑃𝑖
𝑛
𝑖=0   (1) 

where 𝑃𝑖 is a list of control points, each one associated to a weight 𝑤𝑖, and 𝑁𝑖,𝑝(𝑢) are basis functions. 

The 𝑖-th spline is defined over a knot vector Ξ = {𝑢0, … , 𝑢𝑚} which contains 𝑚 = 𝑛 + 𝑝 + 1 knots in non-

decreasing and non-uniform order. The first and last knots are repeated  𝑝 + 1 times. The most common 
formulation of B-spline basis function for computer application is due to Cox and de Boor [3]. For further 
details on NURBS refer to [4, 5]. 
 
The tensor product construct is used to define NURBS surfaces and volumes. Examples of solid NURBS 
objects are illustrated in Figure 1. A (solid) volume body Ω ⊂ 𝑅3 is described by taking the tensor product 

of three NURBS, thus defining a trivariate function 𝑷(𝑢𝑅, 𝑢𝑆, 𝑢𝑇) whose image is Ω  – the three parametric 
dimensions are denoted with the following subscripts 𝑅, 𝑆, and 𝑇. A trivariate NURBS is therefore defined 
by:  

𝑷(𝑢𝑅, 𝑢𝑆, 𝑢𝑇) = ∑ ∑ ∑ 𝑅𝑖,𝑝𝑅
(𝑢𝑅)𝑅𝑗,𝑝𝑆

(𝑢𝑆)𝑅𝑘,𝑝𝑇
(𝑢𝑇)𝑃𝑖,𝑗,𝑘

𝑛𝑇
𝑘=0

𝑛𝑆
𝑗=0

𝑛𝑅
𝑖=0   (2) 

where all points 𝑃𝑖,𝑗,𝑘 form a three-dimensional grid of control points. To each weight 𝑤𝑖,𝑗,𝑘 is it associated 

one of these control points in order to generate the rational functions 𝑅𝑖,𝑝𝑅
(𝑢𝑅)  , 𝑅𝑗,𝑝𝑆

(𝑢𝑆)  and 𝑅𝑘,𝑝𝑇
(𝑢𝑇) 

as in Eq. (1). It is important to notice that the solid NURBS in Eq. (2) is defined by three different 
polynomial orders (𝑝𝑅 , 𝑝𝑆, 𝑝𝑇), and three knot vectors (Ξ𝑅 . Ξ𝑆 , Ξ𝑇). 
 
Similarly to finite elements, NURBS elements can be 𝑝- or h -refined (see [1] for 𝑘-refinement); however, 
higher-order NURBS shape function have an advantage over their finite element counterparts, that is, 
splines do not oscillate nor overshoot near discontinuities. While higher-order finite element polynomials 
yield to spurious numerical oscillation when interpolating a sharp discontinuity (so-called Gibbs 
phenomenon), NURBS do not [2]. Intuitively, a NURBS “cannot oscillate” more than its control grid and 
its higher-order formulation is therefore suitable for numerical analysis of non-smooth solutions. 

2.1.1 Comparison between IGA and FEA 

From the numerical analysis point of view, the most important difference between IGA and FEA is the 
definition and the formulation of the elements. While FEA have elements that can be grouped in 
subgroups to form a mesh, the IGA elements are defined by knots over a patch.  
 
In practice IGA allows larger elements compared to FEA, and they can have different degree for each 
parametric direction; namely, Eq. (2) allows 𝑝𝑅 ≠ 𝑝𝑆 ≠ 𝑝𝑇. Further details may be found in [6], Table 1 
summarizes some of the key differences. 
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Finite Element Analysis (FEA) Isogeometric Analysis (IGA) 

Mesh Knots 

Nodal points Control points 

Nodal variables Control variables 

Interpolant basis Not Interpolant basis 

Approximate CAD Exact CAD 

Polynomial basis NURBS basis 

Subdomains Patches 

Isoparametric paradigm Isoparametric paradigm 

Table 1: Brief comparison between FEA and IGA element formulations. 

2.2 Generation of analysis-ready solid models 

CAD models are assemblies of NURBS surfaces, these “hollow” models can only simulate thin 
structures. Moreover, the NURBS surfaces are often not watertight and this complicates the 
communication between CAD and analysis environments. 
 
In order to assess IGA for large-scale and realistic models, we developed a plug-in for LS-DYNA that 
assists the generation of analysis-ready models from complex CAD geometries. For example, the tensile 
test specimen and the turbine fan blade illustrated in Figure 1 were generated from a CAD software. 
 
The plug-in exports to LS-DYNA solid NURBS cards for IGA modelling. The model is a coarse, but 
exact, representation of the CAD geometry and is refined before the analysis.  Figure 2 illustrates the 
functionality of the plug-in. 
 

  

Fig.2: Workflow of LS-DYNA plug-in for generating IGA models from CAD. 

2.3 Description of test cases 

2.3.1 Stress wave in solid rod  

A uni-axial compression test specimen is loaded axially and the propagating stress wave is analysed 
using IGA and FEA.  This section describes the LS-DYNA model. 
 
Specimen The geometry of the specimen is a cylindrical solid rod of diameter 𝑑 = 4.6 𝑚𝑚 and 

length  𝑙 = 8.0 𝑚𝑚. It is assumed elastic isotropic material, therefore *MAT_001 is used, with Young's 

modulus   𝐸 = 1.04 𝑀𝑃𝑎, Poisson ratio 𝜈 = 0.3  and density 𝜌 = 8.0 𝑒 − 9𝑘𝑔/𝑚3. 
 
Load A resultant force of 8010 𝑁 is applied perpendicularly to one side of the rod, this is the input face. 

The load history is shown in Figure 3, where the rising time is 𝑡𝑟 = 1/10 𝑐 and the striker time is 𝑡𝑠𝑡 =

9/10 𝑐 for a speed wave 𝑐 = √𝐸/𝜌. 

 
Spatial discretization The solid rod is described using two discretisations: hexahedral finite elements 
*ELEMENT_SOLID and a single NURBS patch *ELEMENT_SOLID_NURBS_PATCH. The FEA model is 

obtained using the built-in meshing capability from LS-PrePost cylinder solid which requires, as inputs, 

the number of elements in circumferential and axial direction, respectively 𝑁𝐶 and 𝑁𝐴. To generate the 
NURBS solid patch, the plug-in described in Section 2.2 is used. Two examples of FEA and IGA 
discretisation are illustrated in Figure 4. 
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Two levels of refinement are studied for both discretisation types. A coarse FEA mesh is built with  𝑁𝐶 =
𝑁𝐴 = 80, and a finer one with 𝑁𝐶 = 𝑁𝐴 = 110. The trivariate NURBS patches are defined by mapping 

the parametric direction 𝑇 to the axial direction, and  𝑅, 𝑆 to the cross section. A coarse patch is defined 

by 20 intervals between the extrema of knot vector $ Ξ𝑇 and 6 intervals for Ξ𝑅 , Ξ𝑆, and polynomial orders 
𝑝𝑇 = 4 and 𝑝𝑅 , 𝑝𝑆 = 2. This is then refined to obtain a finer patch by doubling the internals for each knot 

vector, and 𝑝-refining of two orders each parametric direction. 
 

  

Fig.3: Axial pulse load history. 

 
 

 

Fig.4: Spatial discretisation of solid rod with FEA (a) and IGA (b) – notice the different topology in 
the front view.  

2.3.2  Ballistic test on Ti-6Al-4V plate  

A numerical model of a ballistic test is simulated using LS-DYNA. The model includes a target, a 
projectile and four supports. For the sake of simplicity, friction is neglected and the supports are fixed. 
The test is repeated for two initial velocities of the projectile 225 𝑚/𝑠 (below the ballistic limit) and 

275 𝑚/𝑠  (above the ballistic limit). This section describes the FEA and IGA models. All tests will be 
repeated using MPP to assess the scalability of each method. 
 
Geometry The target is a squared 130 𝑚𝑚 x 130 𝑚𝑚 plate 7 𝑚𝑚 thick. The plate is mounted onto four 

fixed semi-spherical supports. The mass of the projectile is 67.3 𝑔. The projectile has rounded nose and 
hits the target perpendicularly. Figure 5 illustrates the model. 
 
Material models The titanium plate is modelled with an elasto-plastic material model with strain rate 
dependency *MAT_024. This was calibrated experimentally for three different strain rates: 

𝜀𝑙𝑜𝑤 = 1.0𝑒 − 3𝑠−1̇ , 𝜀𝑚𝑒𝑑 = 2.52𝑒2𝑠−1̇  and  𝜀ℎ𝑖𝑔ℎ = 2.0𝑒3𝑠−1̇ . The projectile is assumed linear elastic 

(*MAT_001) and the support rigid (*MAT_020). 

 
Spatial discretisation For the discretisation of the target plate, solid brick finite elements and a trivariate 
NURBS patch are used. For both we use different levels of refinement. The FEA mesh needs to be 
particularly fine in order to reduce the hourglass effect, so we created a coarse and a finer mesh. Three 
IGA patches are generated: one relatively coarse, other two resulting from ℎ- and 𝑝-refinement. The first 
two use quadratic shape functions in all parametric directions, the third patch uses fourth order through 
thickness. 
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Fig.5: Perspective view of the ballistic test model.  

3 Results 

The numerical tests are carried out using LS-DYNA, the results on the CPU profiling times are generated 
from a Linux machine (Red Hat 5) running MPI 8.1.1 on Intel Xeon64®. 

3.1 Stress wave in solid rod 

For each one of the four FEA and IGA meshes, the tests are repeated using 1, 4 and 8 cores.  
This section compares the performance and the Von Mises stress obtained with FEA and IGA. 
 
Scalability The CPU time for each simulation is shown in Figure 6(a). As expected, the coarse FEA 
mesh runs faster, while the finer IGA mesh results doubles the CPU time due to the more expensive 
element formulation of the latter. However, by looking at the CPU time for the other two meshes, IGA 
seems to scale better than FEA. This is confirmed by the relative gain   in   Figure 6(b). 
We can conclude that these (small) IGA models scale better on multiple cores than FEA. This is due to 
the more expensive   element formulation of the former. Results are collected in Table 2. 
 
Accuracy The Von Mises stress predicted by FEA and IGA are compared.  Figure 7 shows the stress 
distribution when the front of the travelling stress wave first reaches the middle of rod. At the same time 
frame, Figures 8(a)-(b) show stress isosurfaces within the specimen. Figure 8(c)-(d) show isosurfaces 
when the front of the wave reaches the middle of the rod after bouncing back and travelling toward the 
input face. 
Despite the IGA mesh topology (see Figure 4) introduces elements with poor aspect ratio, in all cases 
the stress distribution captured by IGA results significantly more homogeneous. This is a consequence 
of the higher-order formulation and the absence of Gibbs Phenomenon for NURBS [5]. 
 

Test ID Method 𝑝𝑅 , 𝑝𝑆, 𝑝𝑇 Runtime 1 CPU Runtime 4 CPUs Runtime 8 CPUs 

01 IGA 2, 2, 4 91 min 26 min 16 min 

02 IGA 4, 4, 6 173 min 70 min 58 min 

03 FEA 1 30 min 10 min 8 min 

04 FEA 1 83 min 27 min 21 min 

Table 2: Profiling results for the uni-axial pulse in solid rod test. 

3.2 Ballistic test on Ti-6Al-4V plate 

Test without penetration In all tests with low impact velocity, 𝑣𝑖 = 225 𝑚/𝑠 ,the projectile bounces back 
after hitting the target. Figure 10 shows the velocity (a) and the acceleration (b) of the projectile for the 
fine FEA mesh and three IGA mesh refinements. The velocities show good agreement until 𝑡 = 0.1 𝑠. 
Good matching is also show for the final rebound velocity predicted by FEA and by the ℎ-refined IGA 

model. Figure 10(a) also demonstrates that ℎ-refinement has a higher impact on the final results than 

𝑝-refinement. This fact is more evident in Figure 10(b), where the accelerations of the projectile are 
compared.   
FEA predicts a stiffer response of the plate, leading to a higher maximum acceleration of the projectile. 
 
Test with penetration Figure 11 compares the velocity   of the projectile predicted by three IGA meshes 
and a fine FEA mesh. For the FEA simulations we use different hourglass controls methods. It should 
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be highlighted that for the ballistic test the effect of hourglass is particularly pronounced. All curves in 
Figure 11 match well until the plate breaks, afterwards all solutions diverge significantly. A direct 
comparison of projectile velocity and acceleration between FEA and IGA is shown in Figure 12.  
Both methods predict failure. They initially return similar responses, until about 𝑡 = 0.05 𝑠, afterwards 
the plate fails. Because of the simple material model employed for the target, we cannot compute the 
residual velocity of the projectile accurately. However, Figure 12(b) gives an estimate of when the target 
fails, and therefore what the ballistic limit of the plate is. 
An important difference between for methods is the stress distribution within the plate. Figure 13 and 
Figure 14 illustrate at different time frames that, while FEA removes elements, IGA somehow increases 
the number of elements engaging with the projectile. This can be seen from larger area of elements with 
high values of stress. 
 
Scalability The CPU profiling results from MPP simulations are reported in Figure 9(a) and Figure 9(b) 
for FEA and IGA, respectively. These figures show the CPU cost breakdown for each task of the 
simulations when using 32, 64 and 128 CPUs.  
For both methods, the element processing task scales very well as the percentage of CPU time 
decreases as the number of CPUs increases. The contact search algorithms do not scale that well on 
multi-cores because contact information need to be exchanged between cores. In this model, the contact 
element are distributed to few cores only, other cores need to wait while these carry out the contact 
calculation. As a result, the waiting time increases significantly as the number of cores increases and is 
measured in the time step size task. An optimised decomposition may be applied to reduce the cost of 
this task. Similarly, Misc. 3 accounts for costs due to memory management and communication between 
cores. This task also increases its cost with the number of cores. 
From the relative cost of time step size and Misc.3, we can conclude that the ballistic test model using 
IGA is too small to benefit from the MPP capability of LS-DYNA. In fact, when using 64 or 128 CPUs, 
the overhead cost of communication between cores is comparable to the element processing. We did 
not anticipate this result, this suggests that IGA will not have problems to scale on “large enough” 
models. 
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(a) 

 
(b) 

Fig.6: CPU time for solid rod test case. (a) Compares how CPU time of FEA and IGA scale for 
various levels of refinement as the number of cores increases. (b) Shows the relative gain 
for the same meshes. 

 

 
(a) 

 
(b) 

Fig.7: Compression of solid rod. Von Mises stress contour plot at 𝑡 = 𝑡𝑠𝑡/2 for FEA (a) and IGA (b).  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Fig.8: Von Mises stress distribution at 𝑡 = 𝑡𝑠𝑡/2 for FEA (a) and IGA (b), and at 𝑡 = 𝑡𝑠𝑡/0.5 for FEA 
(c) and IGA (d).  
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4 Conclusions 

This work studied the applicability of isogeometric analysis (IGA) and the presented preliminary results 
were presented. Two test cases comparing FEA and IGA for the analysis of impacts were carried out.  
 
Both methods seem to have comparable applicability, provided that solid IGA models can be imported 
directly from CAD. In order to provide LS-DYNA with analysis-read models, we built a plug-in which 
reads CAD models and creates solid NURBS geometries with identical geometry. Although with limited 
capabilities, we have shown that our methodology can import complex geometries (e.g. turbine fan 
blades). 
 
From the analysis of the CPU time, IGA formulation is more expensive compared to standard finite 
elements; however, the Massively Parallel Processing (MPP) of LS-DYNA was not fully exploited in this 
work. In fact, the models presented in this work are sufficiently large to see the MPP benefits on FEA, 
but too small for IGA. Further studies may confirm that FEA and IGA scale equally well when solving 
larger models.  
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Fig.9: CPU profiling results for FEA (a) and IGA (b). 
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(a) 

 
(b) 

Fig.10: Non-penetrating ballistic test: comparison of FEA and IGA results for projectile  
velocity (a) and acceleration (b). 

 

 
(a) 

 
(b) 

Fig.11: Projectile velocity for ballistic test with penetration: mesh sensitivity analysis for  
IGA (a), and comparison of different hourglass control (HQ) methods for FEA (b). 

 

 
(a) 

 
(b) 

Fig.12: Comparison of projectile velocity (a) and acceleration (b) for penetrating ballistic test using 
FEA and IGA.  
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(a) t = 0.055 s 

 

 
(b) t = 0.075 s 

 

 
(c) t = 0.095 s 

 

 
(d) t = 0.055 s 

 
(e) t = 0.075 s 

 
(d) t = 0.095 s 

Fig.13: Section view of Ti-6Al-4V target plate with plastic strain isosurfaces of FEA (a)-(c) and IGA 
(d)-(f) at different time t. 

 
(a) t = 0.055 s 

 

 
(b) t = 0.075 s 

 

 
(c) t = 0.095 s 

 

 
(d) t = 0.055 s  

(e) t = 0.075 s 
 

(d) t = 0.095 s 
 

Fig.14:  Section view of Ti-6Al-4V target plate with Von Mises stress isosurfaces for FEA (a)-(c) and 
IGA (d)-(f) at different time t. 

 


