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1 Abstract 
Peridynamics is a new nonlocal theory that provides the ability to represent displacement 
discontinuities in a continuum body without explicitly modelling the crack surface. In this paper, an 
explicit dynamics implementation of the bond-based peridynamics formulation is presented to simulate 
the dynamic fracture process in 3D elastic solid. Based on the variational theory, the Discontinuous 
Galerkin (DG) approach is utilized to formulate the classic peridynamics governing equation. As a 
result, the spatial integration can be carried out through finite element approach to enforce the 
boundary conditions, constraints, contacts as well as to handle the non-uniform mesh in the 
engineering practices. The classic material parameters, such as the elastic modulus and fracture 
energy release rate are employed for the determination of material response and failure in brittle 
material. Several numerical benchmarks are conducted to invest the convergence and mesh 
sensitivity of simulations of dynamic crack propagation process with different refinements. The results 
demonstrate that the proposed peridynamics formulation can capture the 3D dynamic crack process in 
brittle material effectively and accurately including multi-crack nucleation, propagation and branching.  
 
Keywords: Bond-Based Peridynamics, Discontinuous Galerkin, Finite Element Method 
 

2 Introduction 
The numerical simulation of material failure is a longstanding challenge in the computational 
mechanics society as well as in the industry. The main difficulty arises from the incompatibility 
between the physical discontinuities emerging from material failure and the partial differential 
equations utilized by the classic continuum mechanics theory to describe the material response of a 
solid body. Another numerical difficulty of the material failure simulation in solids is the challenge of 
maintaining an adequate data structure representing the evolving crack surfaces during failure 
process. Much effort has been devoted to overcome these numerical challenges. At the continuum 
level, the XFEM method [1] introduces the level set method into the finite elements and implicitly 
determines the position and orientation of crack tips. However, as a mesh-based method, a 
sophisticated book-keeping algorithm is required to track the crack surface which turns out to be very 
difficult in 3D problems. The Cohesive FEM [2] method can naturally represent the evolving 
discontinuity in computational domain. However, cohesive laws in the cohesive model are 
phenomenological which not only ruins the consistency of the material property but also leads to a 
convergence problem even in an isotropic solid. The meshfree methods [3] also have been developed 
to model the material failure. Compared to the XFEM, the meshfree methods update the connectivity 
with customized approximations and represent the moving boundary conditions with less effort. 
However, the current techniques to handle multiple cracks seem to not be robust and require further 
research. On the other hand to avoid the localization issue and thus the mesh sensitivity issue, the 
nonlocal theories which have been developed since the late of 1970s [4] are used in XFEM and 
meshfree methods. To evade the spatial differential operation nearby crack surface, the continuum 
weakly or strictly nonlocal models [5] have been developed. These models lead to a formulation where 
the spatial derivatives in the weak form of corresponding governing equations are smeared along the 
material failure surfaces.  
Peridynamics is one of the nonlocal methods proposed by Silling [6,7]. It has been considered as a 
viable and efficient numerical method for the material and structural failure problems. Peridynamics 
theory replaces the spatial differential term in the classical mechanical theories by a nonlocal integral 
term that assembles the interaction forces of a material point with its neighbors. The first peridynamics 
model was presented in 1997. It was named bond-based peridynamics and was applied to the brittle 
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materials [6]. In the bond-based peridynamics model, each material point interacts with its neighbors 
in a compact zone. The interaction between two material points is called a “bond” which is 
independent with each other. The pair-wise bond forces are collinear with the line of a bond and have 
opposite directions. The bond-based peridynamics model is well-developed and has been applied to 
the simulation of damage and fracture in the brittle materials [8], the reinforced concrete materials [9], 
the composite laminate structures [10], the brazed joints [11] and geo-materials [12]. The three-
dimensional formulas of the bond-based peridynamics can be derived from a pair-wise elastic 
potential model which shall result in a constant Poisson’s ratio ratio 𝜈𝜈 = 0.25 rooted in the so-called 
Cauchy relation, i.e., the elastic modulus tensor satisfies the relations as 𝐷𝐷1122 = 𝐷𝐷1212. To address 
this restriction, the so-called ordinary and non-ordinary state-based peridynamics models [13,14] were 
proposed in which the bond forces are dependent each other in contrast with that in the bond-based 
peridynamics. The state-based peridynamics evaluates the bond force based on the multi-body 
potential function which has the capability to represent both the effect of volume and shear. Although 
the state-based peridynamics model has the potential to solve the general material failure problems, it 
is still an ongoing research topic. There are some technical issues [15, 16] remain to be further 
discussed.  
The motivation of the peridynamics theory is the prediction of material damage in a 3D solid. Thus the 
peridynamics computational space is firstly partitioned by a set of material particles. Subsequently, the 
nonlocal integral term of peridynamics theory is implemented by the nodal integral approach [17]. This 
meshfree type of implementation can capture the crack path freely. However, the boundary condition 
enforcement cannot follow the standard way of the meshfree Galerkin formulations. Another 
shortcoming is that the accuracy of computation decays dramatically in the case of non-uniform 
discretization. An alternative way to perform the spatial integration and avoid those numerical defects 
in peridynamics models is constructing an approximation field of the kinematic quantity by finite 
element (FE) shape function [18, 19]. Based on this argument, the integration operation can be carried 
out through Gauss integration points. Several studies [20, 21] have been conducted to verify that the 
peridynamics model can be implemented in the FEM framework with nonlocal boundary conditions. 
The FEM peridynamics approach inherits the advantages of FEM method such as the straightforward 
boundary condition enforcement and the robustness in non-uniform discretization. To represent the 
strong discontinuities in FEM peridynamics, the continuous approximation field is replaced by a 
piecewise continuous field which results in a discontinuous Galerkin formula for peridynamics [19, 22, 
23] in quasi-static analysis. The piece-wise continuous approximation implies the capability to 
represent the crack surfaces automatically. The research reports [22, 23] indicate that this model can 
lead to a stable solution for the quasi-static problems. 
Instead of modeling brittle fracture as a quasi-static problem, this paper presents the explicit dynamics 
bond-based peridynamics formulas using the FEM discontinuous Galerkin theory for the dynamic 
fracture problems. A distributive micro modulus of each bond is calculated from the classic elastic 
modulus to enforce an equivalent elastic energy density from the peridynamics and continuum 
mechanics theory. This paper is organized as follows. In section 2, the basic bond-based 
peridynamics formulations are reviewed. Section 3 constructs the 3D dynamic discontinuous Galerkin 
weak form of the bond-based peridynamics model. The relations between the nonlocal peridynamics 
quantities and classic mechanics quantities are derived based on the equivalent elastic energy density 
in Section 4. After that, several benchmark problems are presented in Section 5. Final remarks are 
given in Section 6. 
 

3 The bond-based peridynamics model 
The bond-based peridynamics model can be considered a macro-scale molecular dynamics model. 
The dynamic motion of a peridynamics point is governed by the collective of the interaction forces of 
this point and its neighboring points in a compact zone. The equation of motion of any point (𝑿𝑿) at 
reference configuration at time 𝑡𝑡 is: 

𝜌𝜌�̈�𝒖 = ∫ 𝒇𝒇(𝒖𝒖(𝑿𝑿′, 𝑡𝑡) − 𝒖𝒖(𝑿𝑿, 𝑡𝑡), 𝝃𝝃)𝑑𝑑𝑉𝑉𝑿𝑿′𝐻𝐻𝑋𝑋
+ 𝒃𝒃(𝑿𝑿, 𝑡𝑡),                         (1) 

where 𝐻𝐻𝑋𝑋 is a compact neighborhood zone of 𝑿𝑿, named as horizon. The horizon of 𝑿𝑿 is defined as 
𝐻𝐻𝑋𝑋 = {𝑿𝑿′||𝑿𝑿′ − 𝑿𝑿| ≤ 𝛿𝛿}, where 𝛿𝛿 is the radius of a sphere centered at 𝑿𝑿. 𝝃𝝃 denotes a bond as 𝝃𝝃 = 𝑿𝑿′ −
𝑿𝑿. The pair of interaction forces (𝒇𝒇) between 𝑿𝑿 and 𝑿𝑿′ is collinear with the bond and has opposite 
orientation which is determined by the relative displacement of two points: 𝜼𝜼 = 𝒖𝒖(𝑿𝑿′, 𝑡𝑡) − 𝒖𝒖(𝑿𝑿, 𝑡𝑡). 𝒃𝒃 is 
the prescribed body force density. The integration term in Eq. (1) collects all the bond forces imposed 
to 𝑿𝑿.  
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There are two important hypothesizes of the bond force: (1) the bond force is a short range force, i.e., 
it only appears inside the compact zone: 

𝒇𝒇(𝜼𝜼, 𝝃𝝃) = 0  𝑤𝑤ℎ𝑒𝑒𝑒𝑒  |𝝃𝝃| > 𝛿𝛿.                                               (2) 

𝒇𝒇 is a pairwise interaction force satisfying: 

𝒇𝒇(−𝜼𝜼,−𝝃𝝃) = −𝒇𝒇(𝜼𝜼, 𝝃𝝃),                                                 (3) 

which ensures the conservation of linear momentum [14]. 
In the bond-based peridynamics model, the material is 
considered as microelastic implying that a bond force is 
related to a micropotential 𝑤𝑤: 

𝒇𝒇(𝜼𝜼, 𝝃𝝃) = 𝜕𝜕𝑤𝑤(𝜼𝜼, 𝝃𝝃)
𝜕𝜕𝜼𝜼� ,                                   (4) 

where the micropotential is a peridynamics concept which is 
a measurement of the elastic energy stored in a bond. In 
contrast to that of classic continuous mechanics, the 
micropotential has the unit of 𝑁𝑁/𝑚𝑚5. Consequently, the bond 
force 𝒇𝒇(𝜼𝜼, 𝝃𝝃) has the dimension of 𝑁𝑁/𝑚𝑚6. The energy density 
of 𝑿𝑿 can be collected through all its bonds: 

𝑊𝑊 = 1
2 ∫ 𝑤𝑤(𝜼𝜼, 𝝃𝝃)𝑑𝑑𝑉𝑉𝑿𝑿′𝐻𝐻𝑋𝑋

.                                   (5) 

The governing equation of the bond-based peridynamics is constructed from the derivative of energy 
equation. Here the formations of 𝑤𝑤(𝜼𝜼, 𝝃𝝃) represent the material types. It can be linear, non-linear 
isotropic or anisotropic materials. This paper employs the prototype microelastic brittle (PMB) material 
model [15]. The PMB model is a linear isotropic material model in which each bond is considered as a 
linear spring. The micropotential of a PMB bond is evaluated from the stretch of a bond: 

𝑤𝑤(|𝜼𝜼|, |𝝃𝝃|) = 1
2
𝑐𝑐𝑠𝑠2|𝝃𝝃|,                                           (6) 

where 𝑐𝑐 is the spring constant named as microelastic modulus. 𝑠𝑠 is the bond stretch ratio: 

𝑠𝑠 = |𝝃𝝃+𝜼𝜼|−|𝝃𝝃|
|𝝃𝝃|

.                                           (7) 

In the case of small deformation, the bond force is calculated as: 

𝒇𝒇(𝜼𝜼, 𝝃𝝃) = 𝑐𝑐𝑠𝑠 𝝃𝝃
|𝝃𝝃|

.                                      (8) 

The bond-based peridynamics model captures the material failure by a bond-based failure criterion: 
the critical bond stretch (𝑠𝑠𝑐𝑐) [14, 15]. With this failure model, a bond with stretch above 𝑠𝑠𝑐𝑐 will be 
broken and this breakage is irreversible. It is said that a crack surface will be formed when all bonds 
crossing this surface are broken. Under this hypothesis, the critical stretch is related to classic fracture 
mechanics quantity: energy release rate, 𝐺𝐺𝑐𝑐 [14, 15]. In the 3D case, this relation is given as: 

𝐺𝐺𝑐𝑐 = 𝜋𝜋𝑐𝑐𝑠𝑠𝑐𝑐2𝛿𝛿5

10
.                                                   (9) 

Unlike the local damage mechanics models, there is no explicit damage indicator in the peridynamics 
model. The failure is introduced at the bond level which is a nonlocal status. However, a local damage 
indicator of a point can be defined through the status of its bonds [14, 15]: 

𝐷𝐷(𝑿𝑿) = 1 −
∫ 𝜑𝜑(𝝃𝝃)𝑑𝑑𝑉𝑉𝑿𝑿′𝐻𝐻𝑋𝑋

∫ 𝑑𝑑𝑉𝑉𝑿𝑿′𝐻𝐻𝑋𝑋

,                                      (10) 

where: 

𝜑𝜑(𝝃𝝃) = �1,    𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠(𝝃𝝃) < 𝑠𝑠𝑐𝑐
0,           𝑓𝑓𝑡𝑡ℎ𝑒𝑒𝑓𝑓𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒                                       (11) 

 

𝑿𝑿 
𝑿𝑿′ 𝝃𝝃 

𝛿𝛿 

Fig. 1. The peridynamics model. 
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4 The Discontinuous Galerkin weak form  
The computational domain of a peridynamics problem is denoted as Ω with essential boundary 
condition 𝑆𝑆𝑢𝑢. The solution of this problem is located in a subspace of Banach space: 𝑆𝑆(Ω) =
�𝒖𝒖(𝑿𝑿) ∈ 𝐿𝐿2(Ω)�𝒖𝒖�𝑿𝑿𝒈𝒈� = 𝑔𝑔�𝑿𝑿𝒈𝒈�  ∀ 𝑿𝑿𝒈𝒈 ∈ 𝑆𝑆𝑢𝑢�. Let 𝒗𝒗(𝑿𝑿) denote a test function located at 𝑆𝑆′(Ω) =
�𝒗𝒗(𝑿𝑿) ∈ 𝐿𝐿2(Ω)�𝒗𝒗�𝑿𝑿𝒈𝒈� = 0  ∀ 𝑿𝑿𝒈𝒈 ∈ 𝑆𝑆𝑢𝑢�. The Galerkin weak form of problem of Eq. (1) is posed as: 

∫ 𝜌𝜌�̈�𝒖(𝑿𝑿) ∙ 𝒗𝒗(𝑿𝑿)𝑑𝑑𝑉𝑉𝑿𝑿Ω = ∫ ∫ 𝒇𝒇(𝜼𝜼, 𝝃𝝃)𝑑𝑑𝑉𝑉𝑿𝑿′𝐻𝐻𝑋𝑋
∙ 𝒗𝒗(𝑿𝑿)𝑑𝑑𝑉𝑉𝑿𝑿Ω + ∫ 𝒃𝒃(𝑿𝑿) ∙ 𝒗𝒗(𝑿𝑿)𝑑𝑑𝑉𝑉𝑿𝑿Ω             

∀  𝒖𝒖(𝑿𝑿) ∈ 𝑆𝑆(Ω),   𝒗𝒗(𝑿𝑿) ∈ 𝑆𝑆′(Ω).                                           (12) 

Like the regular FEM method based on the continuous Galerkin method, the approximation fields of 
the solution (𝒖𝒖(𝑿𝑿)) and test function (𝒗𝒗(𝑿𝑿)), are constructed based on the FEM shape function given 
by: 

𝑢𝑢𝑖𝑖(𝑿𝑿) = 𝑢𝑢𝑖𝑖𝐴𝐴𝑁𝑁𝐴𝐴(𝑿𝑿),   𝑣𝑣𝑖𝑖(𝑿𝑿) = 𝑣𝑣𝑖𝑖𝐴𝐴𝑁𝑁𝐴𝐴(𝑿𝑿),                            (13) 

where 𝑢𝑢𝑖𝑖𝐴𝐴 denotes the nodal displacement 𝑢𝑢𝑖𝑖 of node A. Using the notation in Eq.(13), the index form 
of Eq. (12) can be organized in the following equation for discretization: 

∫ 𝜌𝜌�̈�𝑢𝑖𝑖𝐴𝐴𝑁𝑁𝐴𝐴(𝑿𝑿)𝑁𝑁𝐵𝐵(𝑿𝑿)𝑑𝑑𝑉𝑉𝑿𝑿Ω = ∫ (∫ 𝑓𝑓𝑖𝑖(𝜼𝜼, 𝝃𝝃)𝑑𝑑𝑉𝑉𝑿𝑿′𝐻𝐻𝑋𝑋
)𝑁𝑁𝐵𝐵(𝑿𝑿)𝑑𝑑𝑉𝑉𝑿𝑿Ω + ∫ 𝑏𝑏𝑖𝑖(𝑿𝑿)𝑁𝑁𝐵𝐵(𝑿𝑿)𝑑𝑑𝑉𝑉𝑿𝑿Ω .       (14) 

In the discretization of the continuous FEM domain, the adjacent elements share nodes whereas each 
element has its own nodes in that of the discontinuous FEM domain, i.e., the total nodal number 
equals the total element number times the node number per element. Eq. (14) contains two levels of 
integration. The first level of integration is the computational domain integration discretized by the 
summation of Gaussian points like the regular FEM integration: 

∑ 𝜌𝜌𝑁𝑁𝐵𝐵(𝑿𝑿𝒈𝒈)∆𝑉𝑉𝑔𝑔�̈�𝑢𝑖𝑖𝐵𝐵
𝑛𝑛𝑔𝑔
𝑔𝑔=1 = ∑ (∫ 𝑓𝑓𝑖𝑖(𝜼𝜼(𝑿𝑿𝒈𝒈), 𝝃𝝃(𝑿𝑿𝒈𝒈))𝑑𝑑𝑉𝑉𝑿𝑿′𝐻𝐻𝑋𝑋

)𝑁𝑁𝐵𝐵(𝑿𝑿𝒈𝒈)∆𝑉𝑉𝑔𝑔𝑛𝑛𝑔𝑔
𝑔𝑔=1 + ∑ 𝑏𝑏𝑖𝑖(𝑿𝑿)𝑁𝑁𝐵𝐵(𝑿𝑿𝒈𝒈)∆𝑉𝑉𝑔𝑔𝑛𝑛𝑔𝑔

𝑔𝑔=1 ,           (15) 

where 𝑒𝑒𝑔𝑔 denotes the total number of Gaussian points in the domain. The row-sum mass matrix 
treatment is used in the left side of Eq. (15) for the explicit dynamics simulation. The integration 
remaining in Eq. (15) represents the nonlocal effect of a Gaussian point 𝑿𝑿𝒈𝒈. Because the first level of 
integration is carried out through Gaussian points, the bond connectivity in the domain is build up 
based on the Gaussian points system. This treatment leads to: 

�
𝝃𝝃(𝑿𝑿𝒈𝒈) = 𝑁𝑁𝐴𝐴(𝑿𝑿𝒈𝒈)𝑿𝑿𝐴𝐴 − 𝑁𝑁𝐴𝐴′�𝑿𝑿𝒈𝒈′�𝑿𝑿𝐴𝐴′

𝜼𝜼(𝑿𝑿𝒈𝒈) = 𝑁𝑁𝐴𝐴(𝑿𝑿𝒈𝒈)𝒖𝒖𝐴𝐴 − 𝑁𝑁𝐴𝐴′�𝑿𝑿𝒈𝒈′�𝒖𝒖𝐴𝐴′
,                          (16) 

where 𝝃𝝃(𝑿𝑿𝒈𝒈) is a bond between Gaussian point 𝑿𝑿𝒈𝒈 and its neighbor Gaussian point 𝑿𝑿𝒈𝒈′ in its horizon. 
Therefore the integration domain in Eq. (15) which is a sphere centered at 𝑿𝑿𝒈𝒈 can be discretized by 
Gaussian points. Finally the discretized bond-based explicit dynamics peridynamics governing 
equation becomes: 

∑ 𝜌𝜌𝑁𝑁𝐵𝐵(𝑿𝑿𝒈𝒈)∆𝑉𝑉𝑔𝑔�̈�𝑢𝑖𝑖𝐵𝐵
𝑛𝑛𝑔𝑔
𝑔𝑔=1 =

∑ (∑ 𝑓𝑓𝑖𝑖�𝜼𝜼(𝑿𝑿𝒈𝒈,𝑿𝑿𝒈𝒈′), 𝝃𝝃(𝑿𝑿𝒈𝒈,𝑿𝑿𝒈𝒈′)�∆𝑉𝑉𝑔𝑔′𝑛𝑛𝑔𝑔′
𝑔𝑔′=1 )𝑁𝑁𝐵𝐵(𝑿𝑿𝒈𝒈)∆𝑉𝑉𝑔𝑔𝑛𝑛𝑔𝑔

𝑔𝑔=1 + ∑ 𝑏𝑏𝑖𝑖(𝑿𝑿𝒈𝒈)𝑁𝑁𝐵𝐵(𝑿𝑿𝒈𝒈)∆𝑉𝑉𝑔𝑔𝑛𝑛𝑔𝑔
𝑔𝑔=1 ,    

          (17) 

where 𝑒𝑒𝑔𝑔′ is the total number of neighbors of 𝑿𝑿𝒈𝒈. 𝑿𝑿𝒈𝒈′ can exist crossing elements. 𝑁𝑁𝐵𝐵 is the FEM 
shape function. For each Gaussian point, 𝑿𝑿𝒈𝒈., 𝐵𝐵 loops all the nodes of its element and will eventually 
loop all the nodes in the mesh after all Gaussian points (𝑒𝑒𝑔𝑔) are calculated. Because the 
approximation field is constructed by regular FEM shape function, the boundary conditions can be 
enforced by the standard FEM way. The boundary effect of the nonlocal constitutive law will be 
corrected in the sense of equivalent elastic energy density throughout the domain and as further 
described in the next section. 
  In the forgoing derivation, the integration-by-parts theory plays no role in the variational FEM 
formulation and therefore no derivative terms are present which making the DG method a perfect fit for 
peridynamics to simulate the fracture process. 
 

5 The equivalent classic mechanics quantities for PMB material 
As discussed in Section 2, there are only two material quantities which characterize a PMB material: 
the microelastic modulus 𝑐𝑐 and the critical bond stretch 𝑠𝑠𝑐𝑐. These two quantities are not ordinary 
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material constants used in the classic mechanics models, such as elastic modulus and Poisson’s ratio. 
Fortunately, the microelastic modulus and critical bond stretch can be related to classic mechanics 
quantities based on the equivalent strain energy in the continuous mechanics sense. It’s known that 
the Poisson’s ratio of a PMB is restricted to 0.25 in 3D case. In contrast with other peridynamics 
implementations in which a constant modulus c is used throughout PMB, this work calculates the 
distributive c for each Gaussian point to enforce an equivalent elastic energy density in PMB. 
The classic elastic energy density inside a solid under small deformation condition is defined as: 

𝑈𝑈 = 1
2
𝝈𝝈: 𝝐𝝐,                                               (18) 

where 𝝈𝝈 is the Cauchy stress tensor and 𝝐𝝐 is engineering strain tensor. This expression can be 
expanded as: 

𝑈𝑈 = 𝑣𝑣𝑣𝑣
1−2𝑣𝑣

(𝜀𝜀𝑥𝑥𝑥𝑥 + 𝜀𝜀𝑦𝑦𝑦𝑦 + 𝜀𝜀𝑧𝑧𝑧𝑧)2 + 𝜇𝜇�𝜀𝜀𝑥𝑥𝑥𝑥2 + 𝜀𝜀𝑦𝑦𝑦𝑦2 + 𝜀𝜀𝑧𝑧𝑧𝑧2 � + 𝜇𝜇�𝜀𝜀𝑥𝑥𝑦𝑦2 + 𝜀𝜀𝑦𝑦𝑧𝑧2 + 𝜀𝜀𝑧𝑧𝑥𝑥2 �,                                    (19) 

Here, 𝜈𝜈, 𝜇𝜇 are the Poisson’s ratio and shear modulus respectively. For the isotropic deformation 
(𝜀𝜀𝑥𝑥𝑥𝑥 = 𝜀𝜀𝑦𝑦𝑦𝑦 = 𝜀𝜀𝑧𝑧𝑧𝑧 = 𝜀𝜀, 𝜀𝜀𝑥𝑥𝑦𝑦 = 𝜀𝜀𝑦𝑦𝑧𝑧 = 𝜀𝜀𝑧𝑧𝑥𝑥 = 0) condition, the elastic energy density is (𝜐𝜐 = 0.25): 

𝑈𝑈 = 3𝐸𝐸𝜀𝜀2,                                          (20) 

where 𝐸𝐸 is the elastic modulus. For the case of uniaxial deformation (𝜀𝜀𝑥𝑥𝑥𝑥 = 𝜀𝜀, 𝜀𝜀𝑦𝑦𝑦𝑦 = 𝜀𝜀𝑧𝑧𝑧𝑧 = 𝜀𝜀𝑥𝑥𝑦𝑦 = 𝜀𝜀𝑦𝑦𝑧𝑧 =
𝜀𝜀𝑧𝑧𝑥𝑥 = 0), the elastic energy density can be calculated as: 

𝑈𝑈 = 3
5
𝐸𝐸𝜀𝜀2.                                                      (21) 

The analytical integration of Eq. (5) under the assumptions of spherical horizon and isotropic 
deformation is derived to build up the relation between 𝑐𝑐 and 𝐸𝐸. [14, 15]  

𝑐𝑐 = 18𝑘𝑘
𝜋𝜋𝛿𝛿4

.                                                (22) 

However, this relation decays nearby boundary and under non-uniform discretization. In this work, the 
elastic energy density of a Gaussian point is enforced to equal the collective energy density of all its 
bonds under isotropic deformation condition which results in (𝜀𝜀 = 𝑠𝑠): 

3𝐸𝐸 = ∑ 1
2𝝃𝝃 𝑐𝑐𝑿𝑿|𝝃𝝃|∆𝑉𝑉𝑿𝑿′ .                                     (23) 

Eq. (23) indicates that the microelastic modulus 𝑐𝑐𝑿𝑿 is a distributive quantity in contrast with a constant 
parameter throughout PMB domain in other peridynamics models. In other words, 𝑐𝑐𝑿𝑿 depends on the 
discretization (coarse or fine, uniform or non-uniform) as well as the location of 𝑿𝑿. The points nearby 
boundary have bigger 𝑐𝑐𝑿𝑿 than that located inside domain because the boundary 𝑿𝑿 has fewer bonds. 
Theoretically, Eq. (23) requires a linear equation solver to find the solution of 𝑐𝑐𝑿𝑿. In practice, the 
analytical solution Eq. (22) can be considered as the initial solution and a couple of iterations in the 
implicit solving will lead to an accurate estimation of solution for 𝑐𝑐𝑿𝑿. Using Eq. (3), the bond force with 
this distributive elastic modulus becomes  

𝒇𝒇(𝜼𝜼, 𝝃𝝃) =
𝑐𝑐𝑋𝑋+𝑐𝑐𝑋𝑋′

2
𝑠𝑠 𝛏𝛏

|𝝃𝝃|
.                                 (24) 

Eq. (23) ensures the equivalent elastic energy density 
under isotropic deformation. The equivalence for the 
other deformation status is not granted. For that reason, 
an ellipsoid calibration algorithm [14] is utilized to adjust 
the elastic modulus of a point to fit the complex stress 
status. The horizon of a point 𝑿𝑿 is a sphere with 
radius 𝛿𝛿. Assume a surrounding point X’ has the 
spherical coordinates (𝑓𝑓,𝜙𝜙, 𝜃𝜃),  as shown in Fig. 2. In a 
specific mesh, an artificial uniaxial deformation along X-
axis is defined: 𝑥𝑥1(𝑡𝑡) = 𝑋𝑋1 + 𝑎𝑎𝑋𝑋1, 𝑥𝑥2(𝑡𝑡) = 𝑋𝑋2,  𝑥𝑥3(𝑡𝑡) =
𝑋𝑋3, here 𝑥𝑥𝑖𝑖 denotes the coordinate at current 
configuration. 𝑎𝑎 is the deformation along X- axis. We 
choose 𝑎𝑎 = 0.001 as an initial guess. In this case, the 
ratio between real elastic energy density (Eq. (21)) and the collective bond energy density (Eq. (6)) 
can be calculated by 

Φ 

Θ 

Z 

X 

Y 
X 

X’ 

Fig. 2. The sphere coordinates of a bond 
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𝑇𝑇1 =
3
5𝐸𝐸𝑎𝑎

2

∑ 1
4𝝃𝝃 (𝑐𝑐𝑿𝑿+𝑐𝑐𝑿𝑿′)|𝝃𝝃|∆𝑉𝑉𝑿𝑿′

.                                           (25) 

With the same process, the ratio between real elastic energy density and the collective bond energy 
density along Y- and Z- axis can be evaluated as 𝑇𝑇2 , 𝑇𝑇3 respectively. 𝑇𝑇𝑖𝑖 is an orientation dependent 
vector while the microelastic modulus is a scalar. Here an ellipsoid algorithm is adopted to construct a 
scalar factor to calibrate the microelastic modulus with respect to uniaxial deformations [14]: 

𝑐𝑐𝑐𝑐 = �( 1
(cos(𝜃𝜃) sin(𝜙𝜙))2

+ 1
(sin(𝜃𝜃) sin(𝜙𝜙))2

+ 1
(cos(𝜙𝜙))2

).                             (26) 

Eventually, the microelastic modulus was corrected as: 

𝑐𝑐𝑿𝑿 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑿𝑿0,                                       (27) 

where 𝑐𝑐𝑿𝑿0 is the value estimated by Eq. (23). Note that the numerical equivalence procedure described 
in this section only needs to be performed once in the initialization phase and not needed during the 
time-marching stage for a dynamic simulation.  
 

6 Numerical examples 
In this section, five benchmark examples are presented to study the performance of the discontinuous 
Galerkin bond-based peridynamics formulas and numerical algorithm. The numerical time integration 
of the discrete equation (Eq. (17)) is performed by the central difference integration algorithm[29]. The 
standard bilinear shape function of 8 nodes elements with 8 Gaussian points each element is used for 
all examples. For all numerical examples, the horizon radius 𝛿𝛿 = 0.8 ∗ 𝑙𝑙𝑒𝑒 (𝑙𝑙𝑒𝑒: the diagonal length of 
each element), which implies that 𝛿𝛿 is a distributive value in a computational domain. The 
convergences of 𝛿𝛿 and Gaussian points number are not discussed in this paper. However, they can be 
a reasoned conclusion from the result of Section 5.2 and 5.3.  

6.1 The wave propagation in 3D bar  

Fig. 3. The wave propagation in 3D bar. (a) specimen; (b) the displacement history of the middle point 
 
In dynamic simulations, the stress wave plays a crucial role which induces all the material responses. 
The peridynamics applications run without stress status. However, the displacement of a particle is an 
alternative way to represent the waves inside a solid. A 3D elastic bar (1.0𝑚𝑚 × 1.0𝑚𝑚 × 4.0𝑚𝑚) is 
subjected the initial velocity 𝑉𝑉𝑧𝑧 =  0.2 𝑚𝑚/𝑠𝑠 in the whole specimen and fixed one end, shown as Fig. 3 
(a). The material constants are 𝜌𝜌 = 8.0𝐸𝐸3𝑘𝑘𝑔𝑔/𝑚𝑚3,   𝐸𝐸 = 190𝐺𝐺𝐺𝐺𝑎𝑎. The specimen is discretized by 864 
brick elements (8 nodes elements). This problem is carried out by the proposed method as well as the 
classic FEM method with the same elastic constants and 𝜈𝜈 = 0.25. Induced by the initial velocity, the 
elastic specimen oscillates with time along the dynamic wave. The results from the bond-based 
peridynamics model and the classic FEM are compared in Fig 3 (b) with the displacement component 
𝑢𝑢𝑧𝑧 of the particle located at middle of the domain. Fig. 3 shows the almost identical curves from 
peridynamics and FEM which implies the proposed model can capture the dynamic response of 
material as FEM without the material failure. 

6.2 The convergence of mode-I fracture 
In this numerical examples, a rectangular sample (0.1 𝑚𝑚 × 0.2 𝑚𝑚 × 0.03 𝑚𝑚) with two pre-cracks are 
stretched (velocity :1.0 𝑚𝑚/𝑠𝑠) at two ends with opposite directions as shown in Fig. 4. Consequently a 
mode-I crack will initiate and propagate along the initial cracks. The material constants used in this 
example are:𝜌𝜌 = 8.0𝐸𝐸3 𝑘𝑘𝑔𝑔/𝑚𝑚3  𝐸𝐸 = 190 𝐺𝐺𝐺𝐺𝑎𝑎   𝐺𝐺 = 5.5𝐸𝐸4 𝐽𝐽/𝑚𝑚2. Three model refinements with 600, 
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4800, and 38400 elements are utilized to study the convergence of the proposed equations 
respectively.  
The crack lengths of three refinements are compared in Fig. 5. Note the crack length is measured as 
an approximate value according the time sequence in the damage fringe plots shown in Fig. 6. In Fig. 
5, the crack nucleation time are about the same (the maximum error: 2.0d-5 s) with different 
refinements. Stable crack propagation is observed in three mesh models and the curves converge to 
the finest mesh model. It is interesting to note that the time-crack length curves of three refinements 
are nearly parallel which imply the same crack propagation speed in different meshes. 
The damage morphologies of three refinements at 𝑡𝑡 = 420 𝜇𝜇𝑠𝑠 are shown in Fig. 6. Here the fringe 
color represents the value of damage indicator according to Eq. 10. From Fig.8, one can observe that 
the damage is localized along the crack surface which resembles the mode-I failure in brittle material. 
 

                                              
Fig. 4. The specimen with preset notches                Fig. 5. The convergence of mode I fracture 

 

 
                                   (a)                          (b)                          (c) 

Fig. 6. The damage morphologies of mode I fracture, (a) coarse mesh (600 elements), (b) 
medium mesh (4800 elements), (c) fine mesh (38400 elements) 

6.3 The Kalthoff-Winkler problem 
In addition to the numerical advantages of boundary condition; contact/constraint enforcements; 
spatial integration of non-uniform mesh, coupling with other Galerkin-based numerical methods are 
embedded in the present method. There is a shortcoming introduced by the mesh-based integration: 
the crack path only goes along the edges of elements which result in some degrees of mesh 
dependence of crack path when the mesh is overly coarse. In this example, the Kalthoff-Winkler 
problem [14] which has two tilted cracks is carried out to study the sensitivity of crack propagation path 
in different mesh size.   
The Kalthoff-Winkler experiment concerns the impact of a steel plate with two notches by a cylindrical 
impactor, Fig. 7. The diameter of the cylindrical impactor is 0.05 𝑚𝑚 with the mass of 1.57 𝑘𝑘𝑔𝑔. This 
simulation considers the impactor as rigid body. To reduce the computational cost, the impactor is 
represented by a rectangle shell structure with the same mass and interacts with the steel plate 
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through contact. The material constants of the specimen are listed: 
𝜚𝜚 = 8.0𝐸𝐸3 𝑘𝑘𝑔𝑔/𝑚𝑚3  𝐸𝐸 = 190 𝐺𝐺𝐺𝐺𝑎𝑎   𝐺𝐺 = 6.0𝐸𝐸4 𝐽𝐽/𝑚𝑚2. To study the convergence of the solution, the 
specimen is discretized with three refinements: the coarse mesh with 30800 elements, the medium 
mesh with 52272 elements and fine mesh with 97608 elements.  
The history of crack length in three mesh refinements is shown in Fig. 8 which indicates a 
convergence of the solution. The time sequences of the failure process with different meshes are 
illustrated in Fig. 9 with the contour of damage indicator. While the main crack path in three mesh 
models has the angle about 68𝑜𝑜 as seen in the experimental results, the result of coarse mesh with 
30800 elements predicts the secondary cracks. These secondary cracks do not shown up in the result 
of two refined mesh models, which is a consequence of equation (9), i.e., the coarser mesh results in 
a smaller critical bond stretch. This result suggests that the discretization of the FEM peridynamics 
model should be relatively refined in order to prevent the mesh size sensitivity and achieved the 
desired accuracy. However, the convergent solution is expected when the discretization model is 
continuously refined as shown in Fig 9 (g)-(i). 
 

0.
1 

m

0.
05

 m

     
         Fig. 7. Kalthoff-Winkler problem                           Fig. 8. The crack length history 

 

 
            (a)𝑡𝑡 = 29 𝜇𝜇𝑠𝑠                                (b) 𝑡𝑡 = 59 𝜇𝜇𝑠𝑠                         (c) 𝑡𝑡 = 110 𝜇𝜇𝑠𝑠 

 
                       (d)𝑡𝑡 = 29 𝜇𝜇𝑠𝑠                                (e) 𝑡𝑡 = 59 𝜇𝜇𝑠𝑠                          (f) 𝑡𝑡 = 110 𝜇𝜇𝑠𝑠 

 
               (g)𝑡𝑡 = 29 𝜇𝜇𝑠𝑠                               (h) 𝑡𝑡 = 59 𝜇𝜇𝑠𝑠                          (i) 𝑡𝑡 = 110 𝜇𝜇𝑠𝑠 
Fig. 9. The time sequence of damage process, background: damage indicator, (a)-(c): the coarse 

mesh; (d)-(f): medium mesh; (g)-(i):fine mesh 
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6.4 Mixed mode fracture in the three point bending problems 

 
Fig. 10. The configuration of three point bending test 

In this simulation, the three point bending tests of a pre-notched concrete beam are carried out. The 
configuration of the specimen and the position of notch are shown in Fig. 10 as the experimental set 
up [28]. The dimension of the specimen is 228.6𝑚𝑚𝑚𝑚 × 76.2𝑚𝑚𝑚𝑚 × 25.4𝑚𝑚𝑚𝑚 supported by two fixed 
cylinders (radio: 6mm ). The specimen is impacted by a cylinder projector with initial velocity: 0.05𝑚𝑚/𝑠𝑠. 
According to the different position of notches (height:19.05mm), there are 3 cases of simulation are 
carried out which represent the mode-I fracture (𝜂𝜂 = 0 in Fig. 10) and the mixed mode fractures 
(𝜂𝜂 = 0.5 𝑎𝑎𝑒𝑒𝑑𝑑 𝜂𝜂 = 0.7) respectively. The material properties of concrete are: 𝐸𝐸 = 29𝐺𝐺𝐺𝐺𝑎𝑎,𝜌𝜌 =
2400𝑘𝑘𝑔𝑔/𝑚𝑚3 and Fracture energy release rate: 𝐺𝐺 = 31.1 𝐽𝐽/𝑚𝑚2. The two support cylinders and the 
impactor are consider are considered as the rigid bodies. The specimen is partitioned by 27800 
elements in each case. With different notch positions, the experimental tests show the tilted cracks 
with different angles, as Fig. 11. The case with 𝜂𝜂 = 0 shows vertical crack and the cases (𝜂𝜂 =
0.5 𝑎𝑎𝑒𝑒𝑑𝑑 𝜂𝜂 = 0.7) have the tilted crack path with angle: (𝜃𝜃 = 220 𝑎𝑎𝑒𝑒𝑑𝑑 𝜃𝜃 = 300) respectively. The 
numerical simulations of these cases are plotted in Fig. 12 which illustrate a similar crack pattern with 
the angle 00 for 𝜂𝜂 = 0; 210 for 𝜂𝜂 = 0.5 and 290 for 𝜂𝜂 = 0.7. This validation shows that the present 
method captures the fracture pattern well for the mode I and mixed modes.  

 
Fig. 11. Experimental crack paths under impaction [28] 

                (a) 𝜂𝜂 = 0                                          (b) 𝜂𝜂 = 0.5                                    (c) 𝜂𝜂 = 0.7 
Fig. 12. The numerical predicted crack paths 

6.5 Impact damage on the glass-polycarbonate-glass structure 
One of the major applications of the bond-based peridynamics which concerns the brittle material is 
the damage prediction of windshield in the crashworthiness simulation. In contrast to the house 
windows, the automobile windshield is made of a three-layer structure (glass-polycarbonate (pc)-
glass) as shown in Fig. 13. Hu et al. [25] reported their research on the experimental and numerical 
damage prediction of glass-PC structure using the standard bond-based peridynamics. Bobaru et al. 
[26] presented the numerical prediction of glasses-pc system where 7 glass layers stack on one PC 
layer. This numerical example follows most of their experimental settings and the material constants 
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except another glass layer is attached on the bottom of the PC layer, i.e., the specimen becomes a 
glass-PC-glass structure as shown in Fig. 13. In the experiment, the glass layers are clamped by a 
metal frame with a square hole of 5.08 𝑐𝑐𝑚𝑚 × 5.08 𝑐𝑐𝑚𝑚. As shown in the study by Hu et al. [25] and 
Bobaru et al. [26], this clamp contact boundary condition is simplified as the fixed out-of-plane 
boundary condition in the contact zone ( Fig 13, the red ring at the top and bottom surface). The glass 
is soda-lime glass with material properties given by: 𝜌𝜌 = 2.44𝐸𝐸3 𝑘𝑘𝑔𝑔/𝑚𝑚3, 𝐸𝐸 = 72𝐺𝐺𝐺𝐺𝑎𝑎, 𝐺𝐺 = 8.0 𝐽𝐽/𝑚𝑚2 
[25]. The projectile is treated as a rigid body with material constants given by 𝜌𝜌 = 3.73𝐸𝐸3 𝑘𝑘𝑔𝑔

𝑚𝑚3  ,𝐸𝐸 =
210𝐺𝐺𝐺𝐺𝑎𝑎, 𝜐𝜐 = 0.3. This density leads to a total mass of 0.692 𝑔𝑔 for projector. The projector is placed 
nearby the middle of the top surface with the initial velocity: 𝑉𝑉𝑧𝑧 = −31.0𝑚𝑚/𝑠𝑠. Because no damage is 
observed in the PC layer from experiments [25], the PC layer is considered a simple elastic material 
with 𝜚𝜚 = 1.2𝐸𝐸3 𝑘𝑘𝑔𝑔/𝑚𝑚3,𝐸𝐸 = 2.0𝐺𝐺𝐺𝐺𝑎𝑎, 𝜐𝜐 = 0.25. There is no adhesive between glasses and PC layers in 
the experiments. Therefore, no cohesive elements are placed in the glass-PC and PC-glass interfaces 
for this numerical study. Instead, contacts are assumed in these interfaces and the projector-glass 
interface (the red surfaces in the middle of Fig. 13). The glass-PC-glass specimen is discretized by 
100,000 elements for glasses, 2500 elements for PC layer and the projector is simulated by one layer 
of brick elements at surface with 1014 elements shown in Fig. 13. 
The damage patterns of the specimen are shown in Fig 14. Most damage patterns observed in the 
experiment are reproduced in this numerical simulation: the ripple cracks in the ellipses, the splitting 
cracks in the circles, through-thickness tilted cracks in the diamonds and boundary cracks in triangles. 
On the top surface of the glass, the main failure pattern consists of diagonal cracks and circle cracks 
nearby the impact zone. At the bottom surface, there is a main damage circle zone and the diagonal 
cracks extend from this zone as shown Figs. 14 (a) and (b). This damage pattern is well recognized in 
the failure analysis of windshield applications. The section damage pattern of the glass-PC-glass 
system is shown in Fig. 15 where a clear cone shape damage zone which is found in other glass 
indentation experiments [27] is observed using the proposed method. The contact reaction force 
reacting on the projector is presented in Fig 16. The dynamic damage process is shown in Fig 17 
where all the complex damage phenomena, such as the multi-cracks nucleation, cracks propagation, 
cracks bifurcation and cracks coalescence can be observed.  
 

0.3 cm

0.33 cm

0.33 cm

5.08 cm

10.16 cm

0.556 cm

     
Fig. 13. The glass-PC-glass structure and computational model   

 

   
(a)                                      (b) 

Fig. 14. The damage status by impaction, (a) the top surface; (b) the bottom surface 
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         Fig. 15. The cone shape in global damage zone             Fig. 16. The contact force  
 

7 Summary 
This paper presents the explicit dynamic formulas and numerical algorithms of bond-based 
peridynamics model to predict the damage of 3D brittle material. In contrast to the meshfree version of 
peridynamics, the discontinuous Galerkin weak form of the peridynamics dynamic governing 
equations is considered. The weak equation consists of two-levels of spatial integrations: the 
computational domain integration and horizon integration. In order to represent the moving strong 
discontinuities in the dynamic damage process, the solution is approximated as the element-wise 
discontinuous field by the regular FEM shape function. There are several practical usages to 
implement the bond-based peridynamics model in the FEM framework. First, the boundary condition 
enforcement is straightforward because the FEM shape functions satisfy the Kronecker-delta property. 
Second, the Gaussian integration can reduce the mesh dependence in the case of non-uniform mesh. 
Third, the mesh-based calculation represents the material boundary explicitly. Fourth, it’s easy to 
utilize the existing contact algorithms to provide the contacts between peridynamics and FEM parts.  

 
 

 
                                    (a)𝑡𝑡 = 24 𝜇𝜇𝑠𝑠                                                     (b) 𝑡𝑡 = 33 𝜇𝜇𝑠𝑠          

 
                                     (c)𝑡𝑡 = 44 𝜇𝜇𝑠𝑠                                                    (d) 𝑡𝑡 = 69 𝜇𝜇𝑠𝑠          
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                                      (e)𝑡𝑡 = 79 𝜇𝜇𝑠𝑠                                                  (f) 𝑡𝑡 = 100 𝜇𝜇𝑠𝑠          

Fig. 17. The time sequence of damage process, background: damage indicator 
 
As a nonlocal model, the numerical procedure presented in this paper considers the non-uniform 
discretization as well as the global boundary effect. The present numerical procedure was 
implemented to calculate the specific micro elastic modulus for each particle to assure the equivalent 
elastic energy density obtained by the classic mechanics theory. Therefore the non-failure material 
constant of the PMB material in this paper requires the classic elastic modulus 𝐸𝐸 instead of the micro 
elastic modulus 𝑐𝑐. This paper uses the classic energy release rate as failure criteria which determines 
the critical bond stretch based on the equivalent energy to form a crack surface.  
Several numerical examples are carried out to study the performance of the proposed method. The 
results suggest that this method can capture the dynamic response of elastic solid by the classic FEM 
method before damage occurs. The method can also predict the 3D dynamic process of mixed modes 
fracture, multi-cracks fracture and fragmentation effectively and accurately during the damage 
process. 
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