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1 Abstract 

The condition for plastic instability is a material characteristic and defines the onset of necking in tensile 
tests. In large deformation problems of ductile materials it is fundamental to determine the strain at which 
necking starts as well as the post-necking behaviour in the instability region properly. For verification 
purposes of material models, usually results of numerical analyses are compared to experimental 
outcomes. For tensile tests with ductile materials under dynamic loading, it is challenging to obtain 
comparable experimental and numerical results in terms of the onset of necking and the post-critical 
deformation behaviour. This paper focuses on the derivation of a theoretical criterion describing the 
plastic instability in rate-dependent materials based on the time variation of the strain gradient in a tensile 
specimen under isothermal conditions. We examine the influence of various constitutive equations on 
the theoretical stability condition predicted by different multiplicative as well as additive approaches. For 
multiplicative relations, the results indicate that the onset of necking is, in principle, independent of the 
strain rate, whereas for the considered additive relation, the dynamic necking strain must decrease with 
increasing strain rate. In conclusion, the theoretical stability condition is related to results from finite 
element simulations of dynamic tensile tests with various loading rates. It is shown that the simulated 
and the theoretical predicted onset of plastic instability agree reasonably. 
 

2 Introduction 

In finite element (FE) simulations of dynamic events, the accuracy of numerical results strongly depends 
on the quality of the material models and parameters used. Material characteristics identified in static 
tests are not suitable or are of limited suitability for the description of the deformation behaviour of 
components and structures under dynamic loading. On this account, it is necessary to determine 
material properties in dynamic tests and to provide reliable input data for numerical simulations, e.g. by 
means of rate-dependent material models or flow curves. This can be achieved, for instance, by carrying 
out tensile tests with different loading rates, which, – statically or dynamically – are characterised by a 
material dependent plastic instability and necking of the specimens. In certain applications, the 
evaluation of tensile tests in the range between initial plastic deformation and the uniform elongation, 
the strain at which necking starts, is sufficient. However, for the consideration of large deformation 
problems, it is essential to evaluate and establish material properties for the plastic deformation 
behaviour beyond the uniform elongation. The tensile testing of metallic materials is a standard method 
and the static mechanical properties which can be determined at room temperature are defined in the 
ISO 6892-1 standard [1]. According to that, a test is considered (quasi-)static for a nominal strain rate 
of 𝜀�̇� ≤ 8 ∙ 10−3 s−1. In this paper, the index 𝑛 denotes nominal or engineering quantities. However, many 
engineering materials exhibit a positive strain rate effect, i.e., the flow stress increases with increasing 
strain rate. In the ISO 26203-2 standard [2] dynamic tensile testing is defined for nominal strain rates 

from 10−2 s−1 ≤ 𝜀�̇� ≤ 103 s−1 at room temperature. Though, due to adiabatic heating of the specimen, 
at higher nominal strain rates (𝜀�̇� ≥ 10 s−1) it is impossible to conduct isothermal tests. 

The main drawback of static as well as dynamic tension tests is the necking of the specimen due to 
a plastic instability during the tensile deformation. Up to the uniform elongation at which the instability 
arises, the stress distribution in the specimen can be considered as uniaxial. Therefore, the experimental 
data can directly be evaluated and provided as true stress and true plastic strain curves for the 
description of the constitutive behaviour. Once necking occurs, the assumption of a uniaxial state of 
stress is invalid. Moreover, the strain localizes in the neck and in dynamic tests the local increase of the 
strain rate as well as the temperature are significant. Since the plastic instability that causes the necking 
is a material characteristic, it is essential to be considered regarding the constitutive relations in dynamic 
plasticity. 



11th European LS-DYNA Conference 2017, Salzburg, Austria 

 

 

 
© 2017 Copyright by DYNAmore GmbH 

3 Constitutive Equations in Dynamic Plasticity 

In dynamic plasticity, strain hardening, strain rate dependence and temperature determine the flow 
stress of engineering materials. In ductile materials, elastic strains are small compared to the necking 
or failure strains and can therefore be neglected. Assuming that the true stress 𝜎 is a unique function of 

true plastic strain 𝜀𝑝𝑙, true plastic strain rate 𝜀�̇�𝑙 and absolute temperature 𝑇, the constitutive equation is 

given by: 

𝜎 = 𝑓(𝜀, 𝜀̇, 𝑇) with 𝜀 ≈ 𝜀𝑝𝑙 and 𝜀̇ ≈ 𝜀�̇�𝑙 (1) 

Where the true strain 𝜀 and the true strain rate 𝜀̇ as well as the temperature are assumed to be 
independent quantities. Based on that, there are two fundamental approaches describing dynamic 
plasticity in engineering materials by relating the strain-dependent term multiplicatively or additively to 
strain rate and temperature-dependent functions. 

3.1 Multiplicative decomposition 

The first group of approaches describing the flow stress assumes a multiplicative relation between 
independent functions: 

𝜎(𝜀, 𝜀̇, 𝑇) = 𝑓1(𝜀) 𝑓2(𝜀̇) 𝑓3(𝑇) (2) 

One of the most common representative of multiplicative relations is the constitutive equation suggested 
by Johnson and Cook [3], which has been widely used by numerous authors for various applications in 
order to describe the strength of different materials in numerical simulations of dynamic events, e.g. [4, 
5, 6]. The Johnson-Cook (JC) model expresses the true stress as a function of strain hardening, strain 
rate hardening and thermal softening as follows: 

𝜎(𝜀, 𝜀̇, 𝑇) = [𝐴 + 𝐵 ∙ 𝜀𝑛] ∙ [1 + 𝐶 ∙ 𝑙𝑛 (
�̇�

�̇�0
)] ∙ [1 − 𝑇∗𝑚] with 𝑇∗ =

𝑇−𝑇𝑟

𝑇𝑚−𝑇𝑟
 (3) 

Where 𝐴, 𝐵, 𝐶, 𝑛 and 𝑚 are material constants, 𝜀0̇ is a true reference strain rate for normalization and 

𝑇∗ is the modified temperature defined by the melting temperature 𝑇𝑚 of the material and a reference 

temperature 𝑇𝑟, which must be chosen as the lowest temperature of interest. The modified temperature 
is valid in the range 𝑇𝑟 ≤ 𝑇 ≤ 𝑇𝑚 and for isothermal conditions (𝑇 = 𝑐𝑜𝑛𝑠𝑡. ) the JC-model reduces to: 

𝜎(𝜀, 𝜀̇) = [�̂� + �̂� ∙ 𝜀𝑛] ∙ [1 + 𝐶 ∙ 𝑙𝑛 (
�̇�

�̇�0
)]  (4) 

with 

�̂� = 𝐴 ∙ [1 − (𝑇∗𝑚)𝑇=𝑐𝑜𝑛𝑠𝑡] and �̂� = 𝐵 ∙ [1 − (𝑇∗𝑚)𝑇=𝑐𝑜𝑛𝑠𝑡]. (5) 

Another widely used multiplicative approach is the constitutive relation proposed by Cowper and 
Symonds [7], which originally described the strain rate dependence of the upper yield stress but later 
was generalized as a strain hardening model, assuming the rate-dependence of the material to be 
governed by the following equation: 

𝜎(𝜀, 𝜀̇) = 𝜎𝑠(𝜀) ∙ [1 + (
�̇�

𝐷
)

1 𝑝⁄

]  (6) 

In the Cowper-Symonds (CS) model, Eq.(6), the dynamic behaviour is represented by scaling up a 
general quasi-static true stress- true strain relation 𝜎𝑠(𝜀) by a power law with the Cowper-Symonds 

parameters 𝐷 and 𝑝. Adiabatic effects and thermal softening are not considered, but due to its simplicity 
and its sufficient accuracy in many engineering application, the CS model is one of the most cited and 
applied relations in dynamic plasticity. 
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3.2 Additive decomposition 

The second group of approaches, describing the flow stress of engineering materials, assumes an 
additive scheme and is expressed in general terms as: 

𝜎(𝜀, 𝜀̇, 𝑇) = ℎ1(𝜀) + ℎ2(𝜀̇, 𝑇) assuming ∃ ℎ2
−1(⦁) (7) 

Where ℎ2
−1 is the inverse function of ℎ2. The structure in Eq.(7) is often denoted as ‘overstress’ 

hypothesis. Herein, the true stress is separated in two parts, the strain-dependent function ℎ1(𝜀) 

describing the static true stress-true strain relation, i.e. ℎ1(𝜀) = 𝜎𝑠(𝜀), and the rate- and temperature-

dependent overstress function ℎ2(𝜀̇, 𝑇). Rearranging terms in Eq.(7) yields: 

𝜀̇ = ℎ2
−1(𝜎(𝜀) − 𝜎𝑠(𝜀), 𝑇) with 𝜎(𝜀) ≥ 𝜎𝑠(𝜀) (8) 

One of the first overstress approximations were proposed by Sokolovsky and Malvern [8, 9]. Assuming, 
that the plastic strain rate depends only on the overstress ∆𝜎 = 𝜎 − σ𝑠 without consideration of strain 

and temperature influence on ∆𝜎, Eq.(8) reduces to: 

𝜀̇ = 𝑔(∆𝜎)  (9) 

As a special case of the more general relation in Eq.(9), Cowper and Symonds [7] considered the stress-
strain relation in the plastic range introducing a strain rate effect: 

𝜀̇ = 𝑔(∆𝜎) = �̃� ∙ (∆𝜎)�̃�  (10) 

Inverting Eq.(10) results in the constitutive equation: 

𝜎(𝜀, 𝜀̇) = 𝜎𝑠(𝜀) + (
�̇�

�̃�
)

1 �̃�⁄

  (11) 

The relation in Eq.(11) is used for the studies in this paper, that are exemplarily discussed for additive 
approaches describing the flow stress in dynamic plasticity. 

3.3 Determination of model parameters under isothermal conditions for a ductile steel 

The main subject in this paper is the discussion of plastic instability in rate-dependent, ductile materials, 
formulated with the three different constitutive equations introduced before: the models proposed by 
Johnson-Cook and Cowper-Symonds as well as the overstress hypothesis. In contrast to real dynamic 
events, the thermal softening due to adiabatic heating is neglected in the analytical considerations and 
the numerical simulations. Hence, the constitutive behaviour should be formulated using the isothermal 
equations in Eq.(4), Eq.(6) and Eq.(11). 

DH-36 structural steel is representatively selected as a ductile material. Its main field of application 
is in offshore and naval construction and its technical requirements as well its mechanical properties are 
standardized in the GL II-1-2 rule [10]. Nemat-Nasser and Guo [11] investigated the thermomechanical 
response of DH-36 steel over a wide range of strain rates (10−3 s−1 − 3,000 s−1) and temperatures 

(77 K − 1,000 K). The experimental data displayed the high strength characteristic and good ductility of 
the material. Table 1 summarizes the Johnson-Cook material constants calibrated for DH-36 from [11]. 
Within this paper, the dependence of the true strain rate on the true stress is considered in a range from 

𝜀�̇�𝑖𝑛 = 10−3 s−1 up to 𝜀�̇�𝑎𝑥 = 500 s−1, which are typical threshold values for quasi-static conditions and 
dynamic scenarios like crash or impact events, respectively. For the numerical simulations, the 
reference true strain rate has therefore to be lower and the JC material parameters 𝐴 and 𝐵 must be 

adapted. The reference strain rate is set to 𝜀0̇ = 10−6 s−1 and the adjusted values are given in Table 2. 
Thus, the investigated constitutive behaviour is similar but not identical to the true stress-true strain 
relation of DH-36 and the flow curves presented in this paper must be considered as generic. 

 

�̌� �̌� 𝒏 𝑪 �̇��̌� 𝒎 𝑻𝒓 𝑻𝒎 

1,020 MPa 1,530 MPa 0.4 0.015 1 s−1 0.32 50 K 1,773 K 

Table 1: Johnson-Cook model parameters calibrated for DH-36 steel by Nemat-Nasser and Guo [11] 
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𝑨 𝑩 𝒏 𝑪 �̇�𝟎 𝒎 𝑻𝒓 𝑻𝒎 

844 MPa 1,266 MPa 0.4 0.015 10−6 s−1 0.32 50 K 1,773 K 

Table 2: Johnson-Cook model parameters adapted for a lower reference strain rate 

Considering room temperature (𝑇 = 296 K), the JC model reduces to Eq.(4) with �̂� =  391.15 MPa and 

�̂� = 586.73 MPa. The quasi-static true stress and strain curve is then defined with Eq.(4) and 𝜀̇ = �̇�0: 

𝜎𝑠(𝜀) = [�̂� + �̂� ∙ 𝜀𝑛]  (12) 

Fig.1(a) shows the corresponding true stress versus true strain curves, displayed for four true strain 

rates 𝜀̇ = 10−6 s−1, 10−3 s−1, 1 s−1 and 500 s−1 under isothermal conditions. In order to determine 
corresponding Cowper-Symonds parameters 𝐷 and 𝑝, in Fig.1(b) initial yield stress values of ln(∆𝜎 𝜎𝑠⁄ ) 

predicted by the Johnson-Cook model are plotted against ln(𝜀̇ 𝜀0̇⁄ ) values. In this representation, the CS 
model with its power law in Eq.(6) is expressed by a straight line with the inverse of 𝑝 defining the slope. 
It is seen from Fig.1(b), that the JC curve and the CS line can only coincide for two strain rates. As a 
first constraint, we define that both models must be exact at the highest strain rate of interest 𝜀�̇�𝑎𝑥. 
Secondly, the root mean square of ln(∆𝜎 𝜎𝑠⁄ ) of both curves in the region of interest (𝜀�̇�𝑖𝑛 < 𝜀̇ < 𝜀�̇�𝑎𝑥) 

must be minimized. The resulting straight line is displayed in Fig.1(b) and 𝐷 and 𝑝 can directly be derived 
from its linear equation.  

Plotting Eq.(11) in ln(∆𝜎) against ln(𝜀̇ 𝜀0̇⁄ ), the overstress hypothesis is also represented by a straight 
line and the parameter determination is carried out analogously. Mathematically, it can be shown, that 
both models have the same slope, i.e.: 

�̃� = 𝑝  (13) 

Both, the Cowper-Symonds and the overstress parameters are adapted on the Johnson-Cook model 
within the region of interest and the determined values are summarized in Table 3. Figure 1 depicts flow 
curves defined by the Cowper-Symonds model and overstress hypothesis in comparison to the 
Johnson-Cook model within the range of 𝜀0̇ < 𝜀�̇�𝑖𝑛 < 𝜀̇ < 𝜀�̇�𝑎𝑥, which will be used in the following 
sections to discuss plastic instability in rate-dependent materials. 
 

�̂� �̂� 𝒏 𝑫 �̃� 𝒑 = �̃� 

391 MPa 587 MPa 0.4 exp(23.44) s−1 exp(−62.08) s−1 14.3 

Table 3: Cowper-Symonds and overstress hypothesis parameters, adapted on the Johnson-Cook 

model within the range of 𝜀�̇�𝑖𝑛 = 10−3 s−1 up to 𝜀�̇�𝑎𝑥 = 500 s−1 as region of interest 

  

 (a)  (b) 

Fig.1: Comparison of flow curves for 𝜀̇ = 10−6 s−1, 10−3 s−1, 1 s−1 and 500 s−1 defined with different 
constitutive equations (a) and logarithmic plot of normalized overstress against normalized strain 
rate at the initial yield stress of the Johnson-Cook model for the Cowper-Symonds parameter 
determination (b) 
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4 Criterion for plastic instability 

4.1 Material with rate-independent stress-strain relation 

In a static tensile test with ductile material, non-uniform plastic flow occurs when the uniaxial load 
reaches a maximum. At that point, the geometrical softening 𝑑𝐴 𝑑𝜀⁄ , i.e. the decrease in structural 

integrity due to the reduction of the cross-sectional area 𝐴 of the tensile specimen, is equal or exceeds 
the rate of strain hardening of the material 𝑑𝜎 𝑑𝜀⁄ . This results in a plastic instability and the development 
of a neck in the specimen over a length greater than its characteristic cross-section dimension. This so-
called diffuse necking is shown schematically in Fig. 2 for a sheet metal specimen with rectangular 
cross-section. However, it must be emphasized that the plastic instability is a material characteristic and 
hence the strain or elongation at which necking occurs in a static test is not influenced by the specimen’s 
geometry. Therefore, as expressed by Joun et al. [12], it is inappropriate to apply an analysis model with 
imperfections for a finite element analysis of a tensile test. Instead an ideal analysis model for simulation 
of the tensile test should be proposed. 

 
 (a) (b) 

Fig.2: Schematic representation of a sheet-metal specimen with rectangular cross-section under 
uniaxial loading conditions: initial geometry (a) and geometry after onset of diffuse necking (b) 

 
For a tensile test under uniaxial, static loading conditions and material with isotropic, rate-independent 
constitutive behaviour, the definition of a criterion for the onset of diffuse necking is straightforward. 
Assuming, that the force 𝐹 is constant along the axis of the specimen, it can be defined: 

𝐹(𝑡) = σ(𝑥, 𝑡) ∙ 𝐴(𝑥, 𝑡) = 𝑐𝑜𝑛𝑠𝑡. 𝑖𝑛 𝑥  (14) 

The increase of tensile force 𝑑𝐹, which is required to deform the specimen by 𝑑𝜀 is: 

𝑑𝜀𝐹 = 𝐴 𝑑𝜀𝜎 + σ 𝑑𝜀𝐴 with 𝑑𝜀𝜎 > 0 and 𝑑𝜀𝐴 < 0 (15) 

Here and in the following, the abbreviations 𝑑𝛼(⦁) ≔  𝑑(⦁) 𝑑𝛼⁄  and 𝜕𝛽(⦁) ≔  𝜕(⦁) 𝜕𝛽⁄  are used. 

Furthermore, the equivalent representation of true (left side) and nominal (right side) quantities is applied 
consequently. For a stable deformation, the condition 𝑑𝜀𝐹 > 0 must be satisfied in Eq.(15). Rearranging 

this inequality and consideration of volume consistency 𝑑𝑉 = 0 during plastic deformation yields the 
stability condition for rate-independent materials: 

𝑑𝜀𝜎 > 𝜎 or 𝑑𝜀𝑛
𝜎𝑛 > 0  with 𝜀 = ln(1 + 𝜀𝑛) and 𝜎 = 𝜎𝑛(1 + 𝜀𝑛) (16) 

It states, that the deformation is stable if the slope of the flow curve exceeds the true stress, Eq.(16)1, 
or if the slope of the engineering stress-strain curve is greater than zero. Hence, the criterion for 
instability is defined by equating both sides in Eq.(16)1 and Eq.(16)2: 

𝑑𝜀𝜎 = σ or 𝑑𝜀𝑛
𝜎𝑛 = 0 (17) 

In the literature, Eq.(17)1 is often referred to as Considère-criterion [13] for plastic instability and defines 
the onset of plastic instability and therefore the true necking strain. Eq.(17)2 is equivalent and indicates, 
that the nominal necking strain is defined by the maximum of the engineering stress-strain curve, which 
is widely accepted and corresponds well to observations from experimental quasi-static tensile tests. 
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4.2 Material with rate-dependent stress-strain relation 

With Eq.(17), a criterion defining the onset of non-uniform plastic flow for a material with rate-
independent stress-strain relation is available. For a rate-dependent material, which has no well-defined 
work-hardening rate, this condition cannot be applied [14]. Furthermore, due to thermo-viscoplastic 
effects (inertia, thermal softening, heat conduction and damage evolution) dynamic necking is a more 
complex phenomenon than necking in quasi-static boundary conditions. Often, problems in FE 
simulations concerning the onset of dynamic necking and the plastic deformation behaviour beyond the 
uniform elongation are explained by the fact, that thermal softening is not considered correctly. Böhm 
et al. [15] showed, that the classical isothermal approach is just a part of the error, but that taking 
temperature effects into account still does not yield satisfying results. When evaluating experimental 
results, the problem arises, that the separation of physical effects and influencing factors is challenging, 
if not impossible. In contrast, simulations and analytical approaches allow for a specific selection and 
separate evaluation. Therefore, the attention in this paper is restricted to material with isotropic, strain 
hardening and rate-dependent properties and we consider only isothermal boundary conditions without 
the effect of thermal softening. Based on the work of Campbell [14], we derive a criterion for plastic 
instability considering dynamic conditions by a theoretical analysis of the time variation of strain 
gradients in a general tensile specimen. 

The variations in 𝐴0(𝑥), the initial cross-sectional area along the axis of the specimen, is assumed 
to be small. The strain gradient in a tensile specimen of any geometry can be defined as the partial 
derivative of the true strain with respect to the coordinate along the specimen: 

𝜆(𝑥, 𝑡) = 𝜕𝑥𝜀(𝑥, 𝑡) or 𝜆(𝑥, 𝑡) =
1

1+𝜀𝑛(𝑥,𝑡)
 𝜕𝑥𝜀𝑛(𝑥, 𝑡) (18) 

Under consideration of Schwarz’s theorem, i.e. symmetry of second derivatives, the partial derivate of 
Eq.(18) with respect to the time 𝑡 yields: 

𝜕𝑡𝜆 = 𝜕𝑥𝜀̇(𝑥, 𝑡) or 𝜕𝑡𝜆 =
1

1+𝜀𝑛(𝑥,𝑡)
 𝜕𝑥𝜀�̇�(𝑥, 𝑡) −

�̇�𝑛(𝑥,𝑡)

(1+𝜀𝑛(𝑥,𝑡))
2  𝜕𝑥𝜀𝑛(𝑥, 𝑡) (19) 

Where the true strain rate is related to the nominal strain rate by following equation: 

𝜀̇ =
1

1+𝜀𝑛
𝜀�̇�   (20) 

Eq.(20) implies, that a constant true strain rate does not imply a constant nominal strain rate and vice 
versa. Based on Eq.(1), the strain rate for isothermal boundary conditions can be formulated equivalently 
as a function of true strain and true stress or nominal strain and nominal stress: 

𝜀̇ = 𝑔(𝜎(𝑥, 𝑡), 𝜀(𝑥, 𝑡)) or 𝜀�̇� = 𝑔𝑛(𝜎𝑛(𝑥, 𝑡), 𝜀𝑛(𝑥, 𝑡)) (21) 

so that 

𝑑𝜀̇ = 𝜕𝜎𝑔 𝑑𝜎 + 𝜕𝜀𝑔 𝑑𝜀 or 𝑑𝜀�̇� = 𝜕𝜎𝑛
𝑔𝑛 𝑑𝜎𝑛 + 𝜕𝜀𝑛

𝑔𝑛 𝑑𝜀𝑛 (22) 

By substituting of Eq.(22) into Eq.(19), we obtain following ordinary differential equation of first order: 

𝜕𝑡  𝜆 + 𝑃 𝜆 = 𝑄   (23) 

with 

𝑃 ≡ −𝜕𝜀𝑔 or 𝑃 ≡
𝑔𝑛

1+𝜀𝑛
− 𝜕𝜀𝑛

𝑔𝑛 (24) 

and 

𝑄 ≡ 𝜕𝜎𝑔 𝜕𝑥𝜎 or 𝑄 ≡
1

(1+𝜀𝑛)
 (𝜕𝜎𝑛

𝑔𝑛 𝜕𝑥𝜎𝑛) = −
𝜎𝑛

𝐴0(1+𝜀𝑛)
 (𝜕𝜎𝑛

𝑔𝑛 𝑑𝑥𝐴0) (25) 
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From a mathematical point of view it follows from Eq.(23), that the absolute value of the strain gradient 
|𝜆| increases indefinitely with 𝑡 unless 𝑃 > 0. That gives the condition for stability in dynamic plasticity 
under isothermal conditions: 

𝜕𝜀𝑔 < 0 or 𝜕𝜀𝑛
𝑔𝑛 <

𝑔𝑛

1+𝜀𝑛
 (26) 

Assuming a static and rate-independent stress-strain curve, i.e. 𝜀�̇� = 𝑔𝑛 = 0 and 𝑑𝑔𝑛 = 𝑑(𝑒𝜀𝑔) = 0 

respectively, it follows from Eq.(21): 

𝑑(𝑒𝜀𝑔) = 𝑔(𝑑𝑒𝜀) + 𝑒𝜀(𝑑𝑔) = 0 or 𝑑𝑔𝑛 = 𝜕𝜎𝑛
𝑔𝑛 𝑑𝜎𝑛 + 𝜕𝜀𝑛

𝑔𝑛 𝑑𝜀𝑛 = 0 (27) 

Substituting Eq.(27) in Eq.(26) and assuming 𝜕𝜎𝑔 > 0 and 𝜕𝜎𝑛
𝑔𝑛 > 0, we get: 

𝜕𝜀𝜎 > 𝜎 or 𝜕𝜀𝑛
𝜎𝑛 > 0 (28) 

Hence, the general condition for stability in dynamic plasticity, Eq.(26), reduces to the Considère-
criterion respectively the maximum load criterion in Eq.(17) and therefore includes the criterion for static 
boundary conditions as a special case. 

4.3 Application using the Johnson-Cook and Cowper-Symonds model as well as the 

Overstress hypothesis 

Rearranging the isothermal constitutive equations in Eq.(4), Eq.(6), and Eq.(11), the true strain rate may 
be expressed in the Johnson-Cook model as 

𝑔𝐽𝐶 = 𝜀̇ = 𝜀0̇ ∙ 𝑒𝑥𝑝 [
1

𝐶
(

∆σ

σ𝑠
)] or 𝑔𝑛

𝐽𝐶 = 𝜀�̇� = (1 + 𝜀𝑛) ∙ 𝜀0̇ ∙ 𝑒𝑥𝑝 [
1

𝐶
(

∆σ𝑛

σ𝑠.𝑛
)], (29) 

in the Cowper-Symonds model as 

𝑔𝐶𝑆 = 𝜀̇ = 𝐷 ∙ (
∆𝜎

σ𝑠
)

𝑝
 or 𝑔𝑛

𝐶𝑆 = 𝜀�̇� = (1 + 𝜀𝑛) ∙ 𝐷 ∙ (
∆σ𝑛

σ𝑠.𝑛
)

𝑝
 (30) 

and in the overstress hypothesis as 

𝑔𝑂𝐻 = 𝜀̇ = �̃� ∙ (∆𝜎)𝑝 or 𝑔𝑛
𝑂𝐻 = 𝜀�̇� = (1 + 𝜀𝑛) ∙ �̃� ∙ ((1 + 𝜀𝑛) ∙ ∆σ𝑛)

𝑝
 (31) 

The criterion for instability in dynamic plasticity is given by equating both sides of the inequalities in 
Eq.(26)1 or Eq.(26)2: 

𝜕𝜀𝑔 = 0 or 𝜕𝜀𝑛
𝑔𝑛 =

𝑔𝑛

1+𝜀𝑛
 (32) 

For both multiplicative decomposition approaches, the Johnson-Cook and the Cowper-Symonds model, 
this results under consideration of 𝜕𝜀𝑛

𝜎𝑛 = 0 in: 

𝜕𝜀σ𝑠 = σ𝑠 or 𝜕𝜀𝑛
σ𝑠.𝑛 = 0 (33) 

For the overstress hypothesis, representing an additive decomposition approach, we obtain from 
Eq.(32): 

𝜕𝜀σ𝑠 = σ or (𝜕𝜀𝑛
σ𝑠.𝑛) ∙ (1 + 𝜀𝑛) + σ𝑠.𝑛 = σ𝑛 (34) 

From Eq.(33) and Eq.(34) it can be seen, that the onset of necking is independent of the material 
parameters that determine the strain rate dependence. For the multiplicative constitutive equations we 
obtain a, in principle, strain rate-independent constant necking strain and Eq.(34) indicates for the 
overstress hypothesis, that the dynamic necking strain is always less than the static value. 
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Fig.3(a) - Fig.3(c) depict the condition for stability applied on the constitutive equations with material 
parameters from Table 2 and Table 3 in the true stress and true strain representation, whereas Fig.3(d) 
- Fig.3(f) show the condition for stability in dependence on nominal stress and nominal strain. 

   
 (a)  (b)  (c) 

   

 (d)  (e)  (f) 

Fig.3: Graphical representation of the stability condition: Johnson-Cook and Cowper-Symonds model, 
overstress hypothesis in dependence on true stress and true strain (a)-(c) and on nominal stress 
and nominal strain (d)-(e).  

5 Onset of diffuse necking in quasi-static and dynamic tensile tests: 
Numerical results in comparison to the analytical instability criterion 

It is not possible to manufacture ideal specimen, because geometric imperfections as well as material 
inhomogeneities within a sample cannot be avoided. Therefore, the necking strain found experimentally 
will always be lower than a theoretical one, derived from analytical approaches. The stability criterion, 
discussed in the section before, assumed a general tensile specimen with an imperfect geometry, but 
the variation of initial cross-sectional area was assumed to be small. Considering Eq.(25)2, a perfect 
geometry yields 𝑑𝑥𝐴0 = 0, so that 𝑄 = 0 results. However, the stability condition depends only on the 

mathematical condition 𝑃 > 0, see Eq.(23), so that the criterion for plastic instability holds even for 
specimens without geometrical or material imperfections. Fig.4 depicts the FE model of a sheet-metal 
specimen meshed with shell elements (ELFORM = 2) used for the numerical simulations, which were 
carried out with LS-DYNA [16]. 

 

Fig.4: Sheet-metal specimen with rectangular cross-section: Geometry and mesh configuration used 
for finite element simulations with LS-DYNA 
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According to the ISO 26203-2 standard [2], the estimated nominal engineering strain rate 𝜀�̇�.𝑒𝑠𝑡 can be 

expressed as the quotient of initial displacement rate 𝑣0 and parallel length of the tensile specimen 𝐿𝑐: 

𝜀�̇�.𝑒𝑠𝑡 =
𝑣0

𝐿𝑐
   (35) 

The considered specimen geometry is characterised by a parallel length of 𝐿𝑐 = 18 mm, see Fig.4, so 

that with chosen nominal strain rates of 𝜀�̇�.𝑒𝑠𝑡 = 10−3 s−1, 1 s−1 , 100 s−1  and , 500 s−1  and Eq.(35) the 
velocities summarized in Table 4 result. In the numerical simulations, analogue to experimental tensile 
tests, the velocities are applied single-sided by a constant displacement rate with fixed opposite edge. 
 

�̇�𝒏.𝒆𝒔𝒕 10−3 s−1 1 s−1 100 s−1 500 s−1 

𝒗𝟎 0.018 𝑚𝑚/𝑠 18 𝑚𝑚/𝑠 1,800 𝑚𝑚/𝑠 9,000 𝑚𝑚/𝑠 

Table 4: Defined constant displacement rates for the numerical simulations 

 
The Johnson-Cook model is defined analytically with *MAT_015 using the material parameters given in 

Table 2 under consideration of room temperature 𝑇 = 296 𝐾. The Cowper-Symonds model and the 

overstress hypothesis are applied by using *MAT_024 and defining a table of strain rate-dependent 

curves of effective stress versus effective plastic strain. The true stress values are calculated by applying 
Eq.(6) or Eq.(11) in a range of true plastic strain from 0 ≤ 𝜀 ≤ 1 and using the model parameters given 
in Table 3. For both, the Cowper-Symonds model as well as the overstress approach, the flow curves 

are defined for the strain rates 𝜀̇ = {7.5 ∙ 10−4, 10−3, 0.75, 1, 10, 20, 75, 100, 365, 500, 103} 𝑠−1, which were 
chosen based on preliminary numerical analyses. In addition, following material parameters for steel 
were applied in the definitions: Young's modulus 𝐸 = 210,000 MPa, Poisson's ratio 𝜈 = 0.3 and mass 

density 𝜌 = 7,800 kg/m3. 
For the evaluation and display of numerical results the engineering representation of nominal stress 

versus nominal strain is used. The calculated tensile force is related to the initial cross-sectional area 
and the calculated change of length is related to the initial gauge length. In Fig.5(a) - Fig.5(c), the results 
from the FE simulations of the tensile tests are related to the theoretical stability conditions predicted by 
Eq.(33)2 or Eq.(34) 2. The calculated maximum nominal stresses, where 𝜕𝜀𝑛

𝜎𝑛 = 0 is valid, are shown 

with squares. It appears, as theoretical predicted, that the onset of plastic instability in the multiplicative 
models is independent of the strain rate, the calculated necking strain is simulated nearly constant. The 
simulation results for the overstress hypothesis agree just as well with the predicted instability criterion. 
With increasing strain rate, the calculated dynamic necking strain decreases with increasing strain rate. 
The numerical studies showed for the Cowper-Symonds model and the overstress hypothesis that a 
sufficient quantity of true stress-true strain curves is necessary for a satisfying prediction of the onset of 
necking with *MAT_024. Comparing the results based on the Johnson-Cook and the Cowper-Symonds 

models it must be noted, that the plastic deformation behaviour beyond the uniform elongation differs. 
An evaluation by means of the theoretical approach is not possible and for a further evaluation, the 
comparison to experimental data is expedient. 

   
 (a)  (b)  (c) 

Fig.5: Comparison between theoretical predicted and numerical simulated onset of necking: Johnson-
Cook model (a), Cowper-Symonds model (b) and overstress hypothesis (c) 
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6 Summary 

In this paper, a theoretical criterion was derived, describing the condition for plastic instability in rate- 
dependent materials based on the time variation of the strain gradient in a tensile specimen under 
isothermal conditions. The analytical stability condition holds even for specimens without geometrical or 
material imperfections and confirms that the onset of plastic instability is a material characteristic. The 
influence of multiplicative as well as additive constitutive relations on dynamic necking strains were 
discussed. For the Johnson-Cook and the Cowper-Symonds model, representing multiplicative 
approaches, the necking strain is, in principle, predicted to be independent of the strain rate. In contrast, 
the overstress hypothesis, representing an additive approach, indicates that the dynamic necking strain 
must decrease with increasing strain rate. 

Numerical simulations of dynamic tensile tests with a sheet-metal specimen with rectangular cross-
section were performed using LS-DYNA. The derived theoretical stability conditions were related to the 
results from the FE simulations and it was found that the numerical calculated and the theoretical 
predicted onset of plastic instability agree very good for the investigated multiplicative and additive 
approaches. As a result, it may be concluded, that for engineering materials that exhibit a strain rate-
dependent necking strain, it is inappropriate to apply multiplicative approaches for the description of the 
material behaviour in terms of the onset of necking. Here, additive relations are better suited. 

In further studies, thermal effects should be considered in the discussion of the theoretical stability 
criterion and in the numerical simulations. Moreover, in order to evaluate the post-necking behaviour in 
large deformation problems, the comparison to experimental data from dynamic tensile tests is 
expedient. Consequently, adiabatic effects must be discussed and the consideration of thermal 
softening is mandatory. 
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