Simulating Reinforced Concrete Beam-Column Against Close-In Detonation using S-ALE Solver

Shih Kwang Tay, Roger Chan and Jiing Koon Poon

Ministry of Home Affairs, Singapore

1 Abstract

A 3-stage loading on a reinforced concrete beam-column involving pre-load, blast and post-blast compression to failure was analyzed with the S-ALE solver. This paper presents the findings from the simulation and the results were compared to full-scale blast trials of reinforced concrete beam-column test specimens.

2 Introduction

Given the highly non-uniform blast loading during close-in detonation, structural response calculations using analytical methodologies such as Single-Degree-Of-Freedom (SDOF) would be beyond its applicable limits. From a design point of view, codes such as ASCE Standard 59-11 generally allow advanced non-linear finite element analyses for predicting close-in scenarios that involved complex structural response, localized shearing and breaching.

Unlike SDOF methodology that has established response limits such as support rotation to determine the corresponding component damage, designing structural elements against close-in detonation to an acceptable level of protection using numerical simulation is not a straight-forward task. For close-in or contact detonation, there will be significant localized damage due to the cratering and spalling, as shown by the column in Figure 1, and it is difficult to tell if the component is still able to carry the service load. As such, a quantitative measurement, such as the residual post-blast axial capacity, is required to determine the post-blast component performance.

Fig.1: Severely damaged column due to contact charge

A blast trial was conducted to investigate the residual axial capacity of reinforced concrete column (RC) subjected to close-in detonation. LS-DYNA simulations were performed using a development version of LS-DYNA Euler solver (Is-dyna_mpp_d_Dev_110107_winx64) for both the blast wave (loading) and RC structure (response).

For such close-in blast cases where severe deformation of the target is expected, past attempts to use Lagrangian models showed that there would be severe hourglassing of the elements, resulting in unrealistic energy balances. In addition, there is a need to correct material leakages into the

Lagrangian elements so as to ensure proper Fluid-Structure Interaction (FSI) between the Lagrange structure and detonation products. Both issues render the credibility of the modeling results questionable. As such, a pure Eulerian model which incorporated the explosive, air and structure was chosen to avoid the above issues.

This paper presents the use of Eulerian solver to simulate a structural response under a close-in blast loading using concrete model *MAT_SOIL_AND_FOAM (*MAT_005), *MAT_ELASTIC_PLASTIC_HYDRO (*MAT_010) and *MAT_PSEUDO_TENSOR (*MAT_016) and the results are compared to the experiments. The behavior of these three concrete models against dynamic loading were also studied in a separate paper [1].

3 Test Setup Overview

The RC column was positioned horizontally on support structures at a scaled distance $Z = 0.8 \text{ m/kg}^{1/3}$, within close-in design range ($Z < 1.2 \text{ m/kg}^{1/3}$) as defined in Unified Facilities Criteria (UFC) 3-340-02 [2]. The main charge was a spherical TNT charge, with the centre of the sphere raised to a height of 450 mm from the ground. The test specimen was a 300 mm x 300 mm square RC column with a clear span of 3m fixed with 500 mm x 700 mm x 500 mm RC blocks at both ends, as shown in Figure 2.

Fig.2: Test Column

The column was supported at the end blocks using a steel encased RC support structure. A 50-ton pre-load was applied and sustained to the column using a hydraulic jack. The residual axial capacity of the damaged column was measured in-situ using a compression rig after the blast.

4 Model Setup

The model was generated using *ALE_STRUCTURED_MESH and *INITIAL_VOLUME_FRACTION_GEOMETRY to invoke the Structured ALE (S-ALE) solver without the use of pre-processing software (See Appendix). *PARAMETER keyword also allowed the model to be quickly setup for parametric and mesh size study. Different views of the model consisting of air and the RC column are shown in Figures 3 to 5. The reinforcing bars and stirrups were modeled using

one-dimensional beam elements and coupled to the concrete material using *ALE_COUPLING_NODAL_CONSTRAINT. Figure 6 shows the model of the rebars and stirrups.

Fig.6: Model of the rebars and stirrups

Material

The material models selected for the runs were simple geomaterial models, *MAT_005, *MAT_010 and *MAT_016, calibrated to 32MPa unconfined compressive strength. The concrete material inputs can be found in the Appendix. Unlike other simple input concrete models such as *MAT_016, *MAT_072R3 and *MAT_159 which only requires minimal user input to invoke the auto generated parameters, *MAT_005 and *MAT_010 require the coefficients a₀, a₁ and a₂ to be calibrated to tri-axial compression data. The tri-axial test compression data were simulated with autogenerated *MAT_072R3. A trilinear equation-of-state *EOS_TABULATED_COMPACTION (*EOS_008) autogenerated with *MAT_072R3 was used with *MAT_010.

*MAT_016 Mode II concrete was used which included a damaged surface and damage scaling table based on parameters suggested in LS-DYNA User Manual [3] which are referenced to Dilger, Koch and Kowalczyk [1984] plain concrete.

	$a_{0f} = \frac{f_c^1}{10}$	and	$a_{1f} = 1$	5	
Card 4:	0.0 5.17E-04	8.62E-06 6.38E-04	2.15E-05 7.98E-04	3.14E-05	3.95E-04
Card 5:	9.67E-04 4.00E-03	1.41E-03 4.79E-03	1.97E-03 0.909	2.59E-03	3.27E-03
Card 6:	0.309 0.790	0.543 0.630	0.840 0.469	0.975	1.000
Card 7:	0.383 0.086	0.2 4 7 0.056	0.173 0.0	0.136	0.114

The reinforcement bars were defined using ELFORM=1 (Hughes-Liu) beam elements and *MAT_024 (Piecewise_Linear_Plasticity) was used as the constitutive model with *DEFINE_TABLE to specify the effective plastic strain values vs effective stress values at various strain rates.

Stages of Loading

The loadings were carried out in three stages. In the first stage, the column was axially compressed on one end and fixed on the other so as to achieve a pre-defined 50-ton pre-load. In the second stage, a spherical TNT resting on ground was detonated and the blast wave was allowed to propagate and impinge on the column. Post-blast compression to failure was conducted in the final stage to determine the residual capacity of the column.

Besides capturing the post-blast residual axial capacity, the original axial capacity of the reinforced concrete column model (not subjected to blast) was separately computed for the three material models by applying an axial compression load to failure. The results were compared to the actual control column compression result.

Boundary Conditions

The axial compression load was read using the nodal forces computed at the fixed end (Node Set 1001) of the concrete column. The keyword *DATABASE_NODAL_FORCE_GROUP allows the nodal forces to be aggregated easily to determine the total axial load applied to the concrete column.

The centre of charge was positioned on the -Y face of the generated structured mesh and raised 450 mm above ground (-Z face). Appropriate boundary conditions using *BOUNDARY_SPC were applied in the direction perpendicular to its face to represent the symmetry on the -Y face and reflecting ground on the -Z face as shown in the following keywords.

*SE1	NODE G	ENERAL						
ş	SID							
	1001							
Ş	OPTION	E1						
	BOX	1						
	DPART	23						
*SET	NODE G	ENERAL						
\$ S3	mmetry	on -y face						
Ş	SID							
	1010							
Ş	OPTION	E1	E2	E3	E4	E5	E6	E7
5	SALEFAC	1			1			
*SE1	_NODE_G	ENERAL						
\$ G1	cound on	-z face						
Ş	SID							
	1011							
Ş	OPTION	E1	E2	E3	E4	E5	E6	E7
5	SALEFAC	1					1	
*BOUNDARY_SPC_SET								
\$ N]	D/NSID	CID	DOFX	DOFY	DOFZ	DOFRX	DOFRY	DOFRZ
	1001	0	1	1	1	0	0	0
	1010	0	0	1	0	0	0	0
	1011	0	0	0	1	0	0	0

Axial Compression

Axial compression was applied by selecting a group of concrete only nodes within the end block and assigning *BOUNDARY_PRESCRIBED_MOTION at a constant velocity of 0.015 mm/ms towards the fixed end. The load was applied at a strain rate of 0.005 s⁻¹ to simulate a quasi-static compressive load.

5 Results and Discussions

Reference Column Comparison

Compression test was performed on the model to obtain the axial capacity of the undamaged column. The results were compared with the actual control column which achieved an axial load capacity of 340 tons. Mesh sensitivity was investigated using three different mesh sizes (20mm, 30mm and 50mm). The results are shown in Figures 7, 8 and 9.

Fig.7: Compression test result (*MAT_005)

Fig.8: Compression test result (*MAT_010)

Fig.9: Compression test result (*MAT_016)

	Compressive Load (tons)						
Material Model	50mm	30mm	20mm	(Test data) Control Column			
*MAT_005	371	346	352				
*MAT_010	433	340	342	340			
*MAT_016	358	367	353				

Table 1: Summary of compressive load achieved by various models

It was demonstrated that the axial capacities of these Eulerian concrete models, when loaded in a quasi-static manner, were quite close to the actual experimental result. This lent confidence that the

post blast axial compression will yield meaningful results. In addition, for all material models, the results were closer to that of the actual control column when the mesh was finer.

Comparison of Deflection

Although it was highlighted at the beginning of the paper, the support rotation for such close-in blast cases may not be a representative measurement of the component damage, it is nevertheless still useful as an additional parameter to assess the model's accuracy in predicting the experimental results.

In the experiment, the test column measured a permanent deflection of 94mm at midspan. A diagonal shear failure was also observed at one end of the column. In the numerical simulation, the horizontal deflections at midspan of the models were captured using *DATABASE_TRACER (TRACK=0) and compared against the test column as shown in Table 2.

Fig. 10: Blast loaded RC column (volume fraction with iso-surface)

Fig.11: Damaged Test Column

	Permanent Deflection (mm)					
Material Model	50mm	30mm	Test measurement			
*MAT_005	70	63				
*MAT_010	24	11	94			
*MAT_016	80	61				

Table 2: Summary of permanent deflection achieved by various models

Fig.12: Midspan Deflection

It was observed that *MAT_005 and *MAT_016 were able to predict the flexural response of the actual column more closely as compared to *MAT_010. The 30mm mesh model using *MAT_010 only achieved approximately 10% of the actual midspan deflection.

Residual Capacity

The residual axial capacity of the test column was measured in-situ using a compression rig that was seated on the support structures. The test column measured a maximum load of only 12.5 ton due to the rebars buckling at the diagonal shear failure zone.

Fig.13: Residual axial capacity (*MAT_005)

Fig.14: Residual axial capacity (*MAT_010)

Fig.15: Residual axial capacity (*MAT_016)

	Residual Capacity (tons)					
Material Model	50mm	30mm	Test measurement			
*MAT_005	252	265				
*MAT_010	91	198	12.5			
*MAT_016	86	76				

Table 3: Summary of residual capacity achieved by various models

The 50 mm mesh model using *MAT_010 was observed to be unstable where the timestep drops rapidly at about 400ms and had to be terminated. Further mesh refinement at 30 mm mesh improved the stability and achieved maximum residual capacity of 198 tons.

The *MAT_005 and *MAT_010 models (30mm mesh) observed approximately 22-42% reduction in axial capacity although the test measured almost 96% reduction. *MAT_016 model on the other hand measured approximately 78% reduction of the axial capacity.

The close-in blast led to significant localized damage of the concrete and flexural response in the column. As expected from *MAT_005 and *MAT_010 where only the shear failure and pressure-volume surfaces are defined, the extent of damage to the concrete material will not be captured by these simple concrete models in a staged loading simulation. This was rightfully so as these constitutive models do not have any damage scaling and/or failure models incorporated in them. The blast loaded column will therefore still develop its strength based on the defined two-surface model (shear failure and pressure-volume surface) as though undamaged by the blast load during the post-blast compression. The reduced axial capacity observed for *MAT_005 and *MAT_010 models was likely due to buckling as a result of the flexural response in the column.

The *MAT_016 Mode II concrete on the other hand took into account the damage incurred during the blast loading and the subsequent post-blast compression more appropriately represented the reduced strength of the column through damage scaling. Having said that, the loss of concrete associated with localized cratering of concrete due to close-in air blast remains a concern and may not be possible to represent in these material models.

6 Conclusion

As mentioned in the introduction, the primary motivation for exploring the use of a full Eulerian model to simulate structural response in close-in detonation as an alternative to FSI using a Lagrangian model in Eulerian fluid space was to avoid issues associated with hourglassing and material "leakages". This study has shown that the full Eulerian model exhibited reasonable results based on the selected material models.

The results presented in this paper also offers useful insights to the various concrete material models that support MM-ALE solid element formulation and the associated techniques to simulate such complex structural response against close-in scenario using a full Eulerian model. Based on the three material models investigated, although none of the models attained a post-blast axial capacity close to that obtained from the experiment, the result for *MAT_016 (Mode II) was the closest. This could be due to the material model having the capability to register damage due to the blast load, and this is important when performing a staged loading simulation.

7 References

- [1] Jiing Koon Poon, Shih Kwang Tay, Roger Chan, Len Schwer. "Simulating Dynamic Loads on Concrete Components using the MM-ALE (Eulerian Solver)", European LS-DYNA Conference, 2017.
- [2] Structures to Resist the Effects of Accidental Explosions. Unified Facilities Criteria UFC 3-340-02, 2014.
- [3] LS-DYNA R8.0 Keyword User's Manual II, 2015.

Appendix

*ALE_STRUCTURED_MESH									
ş#	mshid	pid	nbid	ebid					
	1	1001	50000001	50000001					
\$ #	cpidx	cpidy	cpidz	nid0	lcsid				
	2001	2002	2003						
*ALE	_STRUCTU	JRED_MESH_	CONTROL_PO	INTS					
\$ X-	Dir								
	2001								
Ş#		×1		x2					
		1		&xbound1					
		11		&xbound2					
		21		6x1					
		&xnodel		6X2					
		&xnode2		Exbounds					
****	STRUCTI	TRED MESH	CONTROL DO	TNTS					
¢ v_	_SIRUCIO	KED_HESH_	CONTROL_FO	INIS					
φ 1-	2002								
S#	2002	x 1		x 2					
T U		1		&v1					
		_ ≨vnode1		&v2					
		&vnode2		&vbound1					
		&vnode3		&ybound2					
*ALE	STRUCTU	JRED MESH	CONTROL PO	INTS					
\$ Z-	Dir								
	2003								
ş#		x1		x 2					
		1		&z1					
		&znode1		&z2					
		&znode2		&zbound1					
		&znode3		&zbound2					
*1N1	TIAL_VOI	LUME_FRACT	TON_GEOMET	RY					
\$Ŧ	Imsia	Imiatyp	bammg	ntrace					
c	1001		2						
ар с#	anttim	fillert	former						
44	CHUCYP 6	1111000	1 Lanung	~	¥*	v2 0			
s±	×0	v0	z0	r0	, v	0			
Ŧ 0	6x0	6v0	& z 0	&radius					
\$ Co	lumn	-							
\$ # c	onttyp	fillopt	fammg	vx	хy	xz	radvel	unused	
	5	0	3	0.0	0.0	0.0	0		
\$ #	xmin	ymin	zmin	xmax	ymax	zmax	unused	unused	
	&cx0	8с70	&cz0	&cx1	&cy1	&cz1			
\$ En	d Block	1							
\$# c	onttyp	fillopt	fammg	vx	хү	xz	radvel	unused	
	5	0	3	0.0	0.0	0.0	0		
Ş#	xmin	ymin	zmin	xmax	Ymax	zmax	unused	unused	
	&eb1x0	&ebly0	&eb1z0	&eb1x1	&eblyl	&eb1z1			
Ş En	a Block	2	<i>E</i>						
≽∓ C	onttyp	TILLOPT	rammg	vx 0 0	xy	xz	radvel	unusea	
c#	vmin	u min		0.0	0.0	0.0	unuand.	unuand	
44	Ceb2v0	(eb2v0	(eb2z0	(eh?v1	(eb2v1	Linax (ab271	unuseu	unuseu	
*ALE	COUPLIN	IG NODAL C	ONSTRAINT I	D	debryr	COLDI			
ş#	- coupid		-						
	1								
\$#	slave	master	stype	mtype	ctype	mcoup			
	12	1001	0	1	2	0			
\$#	start	end				frcmin			
*	0.0001.	0000E+10	0	0	0	0.500000			
Reba	_PARI_LL	ST_TTIPE							
S#	sid	da1	da2	daß	da4	solver			
* *	12	0.0	0.0	0.0	0.0ME	CH			
\$ #	pid1	pid2	pid3	pid4	pid5	pid6	pid7	pid8	
	21	22	23	0	0	0	0	0	

*MAT_005

*MAT_SOIL_AND_FOAM \$# mid ro g bulk a0 a1 a2 pc | 3 2.1200E-3 11157.167 74381.227 26.268059 16.816317 1.189408 -1.010000 \$# vcr ref lcid | 0.000 0.000 0 \$# eps1 eps2 eps3 eps4 eps5 eps6 eps7 eps8 | 0.000 5.7300E-2 9.4800E-2 0.111600 0.128700 0.145500 0.162600 0.177600 \$# eps9 eps10 0.189000 0.211800 \$# p1 p2 p3 p4 p5 p6 p7 p8 | 0.000 250.00000 500.00000 1000.0000 1500.0000 2500.0000 3000.0000 \$# p9 p10 3500.0000 4500.0000

*MAT_010

*M	*MAT_ELASTIC_PLASTIC_HYDRO_SPALL								
Ş	Material	Type 10 (u	nits: Newton	ns-millimet	ter-mil	lisecond-MPa)			
\$-	+1-	+2-	+3	+4	+	5+б	+7	+8	
\$	MID	RO	G	SIGO	E	H PC	FS	CHARL	
	3	2.30E-3	11.58E3	9.46	ο.	0 -1.0			
Ş	A1	A2	SPALL						
	2.24	-0.012	3.0						
Ş	EPS1	EPS2	EPS3	EPS4	EPS	5 EPS6	EPS7	EPS8	
Ş	EPS9	EPS10	EPS11	EPS12	EPS1	3 EPS14	EPS15	EPS16	
Ş	ES1	ES2	ES3	ES4	ES	5 ES6	ES7	ES8	
ş	ES9	ES10	ES11	ES12	ES1	3 ES14	ES15	ES16	
ş-			EO:	5-8 CARDS					
ş	Generated	EOS 8 (Ta	bulated Com	paction)					
*E	OS_Tabula	ted_Compac	tion						
ş	EOSID	Gamma	EO	Vo10					
~	3	0.000E+00	0.000E+00 1	.000E+00					
ş	VolStr	ain01	VolStrain02	VolSti	rain03	VolStrain04	VOL	Strain05	
~	0.0000000	0E+00 -1.5	0000000E-03	-4.3000000	00E-03	-1.0100000E-02	-3.05000	0000E-02	
ş	VolStr	ain06	VolStrain07	VolSt	rain08	VolStrain09	Vol:	Strain10	
	5.1300000	OE-02 -7.2	6000000E-02	-9.4300000	00E-02	-1.7400000E-01	-2.08000	D000E-01	
ş	Press	ure01	Pressure02	Press	sure03	Pressure04	Pre	essure05	
	0.0000000	0E+00 2.2	3143683E+01	4.8645323	30E+01	7.81002892E+01	1.4839	0549E+02	
ş	Press	ure06	Pressure07	Press	sure08	Pressure09	Pre	essure10	
~	2.2381311	4E+02 3.1	7533462E+02	4.8578379	99E+02	2.83615622E+03	4.3379	1321E+03	
ş		Multipli	ers of Gamma	a*E					
	.00000000	0E+00 .00	0000000E+00	.00000000	00E+00				
	.00000000	0E+00 .00	0000000E+00	.00000000	00E+00		_		
ş	BulkU	niaui	BulkUnid02	Bulk	Unid03	BulkUnid04	Bu.	LKUNId05	
~	1.4876245	05404 1.4	5/62456E+04	1.5084513	30E+04	1.58432015E+04	1.8848	20316+04	
÷	BulkU		BULKUNIGU7	Bulk	UNIDUB	BulkUnid09	Bu.	LKUNIG10	
~	2.1008081	02+04 2.4	0/300262+04	2./149140	016+04	0.100100432+04	/.4381.	22/06+04	

*MAT_016

*M	AT.	PSEUDO	TENSOR							
\$#		mid	r	0	g	pr				
		3	2.120E-	-3	0	0.200				
\$#		sigf	a	10	a1	a2	aOf	alf	b1	per
		3.200		8 0.3	333	0.0104	3.200	1.500	1.250	0.000
\$#		er	pr	r si	gу	etan	lcp	lcr		
		0.000	0.00	0.0	000	0.000	C) 0		
\$#		x1	2	(2	х3	x 4	x 5	x6	x 7	x 8
		0.000	8.6200E-	6 2.1500	-5 3	3.1400E-5	3.9500E-4	5.1700E-4	6.3800E-4	7.9800E-4
\$#		x 9	x1	LO 3	11	x12	x1 3	x14	x15	x16
9	. 6'	700E-4	0.00141	0.0019	970	0.002590	0.003270	0.004000	0.004790	0.909
\$#		ys1	ys	32 1	/33	уз4	ys5	узб	ys7	As8
	0.3	309000	0.54300	0.8400	000	0.975000	1.000000	0.790000	0.630000	0.469000
Ş#		ys9	ys1	LO YS	311	ys12	ys13	ys14	ys15	ys16
	0.3	383000	0.24700	0.1730	000	0.136000	0.114000	0.086000	0.056000	0.000
Ş	Gei	nerated	EOS 8 ((Tabulated	i Cor	mpaction)				
*E	os	Tabula	ted_Comp	action						
Ş		EOSID	Gamn	na	EO	Vol0				
		8	0.000E+0	0 0.000E+	-00 1	L.000E+00				
Ş		VolStr	ain01	VolStra	in02	2 Vol	Strain03	VolStra	in04 Vo	lStrain05
	0.0	0000000	0E+00 -0	.43020000)E-03	3 -0.6800	0000E-01 -	0.10000000	2-00 0.000	000000E-00
Ş		VolStr	ain06	VolStra	in07	7 Vol	Strain08	VolStra	in09 Vo	lStrain10
	0.0	0000000	0E-00 0	.00000000)E-00	0.0000	0000E-00	0.00000000	2-00 0.000	000000E-00
Ş		Press	ure01	Pressu	ire02	2 Pro	essure03	Pressu	ce04 I	Pressure05
	0.0	0000000	0E+00 0	.64000000)E+01	0.2659	0000E+03	0.573100001	2+03 0.000	000000E+00
Ş		Press	ure06	Pressu	ire07	7 Pro	essure08	Pressu	re09 I	ressure10?
	0.0	0000000	0E+00 0	.00000000)E+00	0.0000	0000E+00	0.00000000	2+00 0.000	000000E+00
ş			Multip	oliers of	Gam	na*E				
	.0	0000000	0E+00 .	.000000000)E+00	.00000	0000E+00			
	.0	0000000	0E+00 .	.000000000)E+00	.00000	0000E+00			
ş		BulkU	nld01	BulkUr	1d02	2 Bu	1kUn1d03	BulkUnl	Ld04 E	BulkUnld05
	1.	4880000	0E+04 1	.48800000)E+04	4 1.4880	0000E+04	1.48800000	2+04 0.000	000000E+00
ş		BulkU	nld06	BulkUr	1d07	7 Bu	1kUn1d08	BulkUnl	Ld09 F	BulkUnld10
	0.0	0000000	0E+00 0	.00000000)E+00	0.0000	0000E+00	0.00000000	2+00 0.000	000000E+00