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1 Model Reduction 

Model Reduction Techniques (MRT) are algebraic approximation solutions allowing for fast (real-
time) interpolations (reconstruction) or extrapolations (prediction), based on previously existing 
DOE-type results, obtained either from FE computations or directly from constructions of reduced 
FE solutions. In a sense reduced models are subsets or decomposed domains of the solutions 
allowing for reconstruction of all spatial or temporal domain response.  
 
Contrary to FE where global interpolations are based on local "shape" (geometrical) functions, 
reduced models are based on basis functions which include not only geometrical but also material, 
boundary conditions and loading. This contributes greatly to fast solver solutions for on-board 
computing and may be used for time dependent approximations. 
Further, unlike response surface methods where smoothed solutions on certain criteria are 
obtained, MRT's provide complete solutions (reconstructions) of the space-time response of the 
original differential equation. 
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2 Stat of the art 

Many methods such as Kriging, Neural Networks, Radial Basis Functions, PCA, Kernel PCA, have 
been proposed for reconstruction of response surfaces or reduced models based on sampling or 
time-history recordings. These are potential solutions which may be employed for the spatial-
temporal decomposition of the response domain in consideration. Unfortunately they lose their 
computational efficiency for the treatment of temporal dimension with high discretization, especially 
for non-linear explicit time integration techniques, with small time-steps. More generally and with 
higher computational efficiency, two families of solutions are often considered. The first is called 
PGD (Proper Generalized Decomposition) [1],[2] which is an intrusive method (NOTE: by intrusive 
or a priori methods we mean that one needs to modify the solver code and structure in order to 
obtain a reduced set of equations to resolve), based on a decomposition of the initial set of 
equations via a separation of variables procedure, involving assumed functions for some 
dimensions of the problem. As a crude example beam and shell type elements may be considered 
as PGD solutions for 3D solid elements as could also be considered SPH solutions for fluid 
dynamics simulations. The second, non-intrusive, is the POD (Proper Orthogonal 
Decomposition)[3][4]. While the PGD is based on a decomposition of the original differential 
equations, for obvious reasons (mainly not having access to the solver source code) it is not 
adapted for general purpose applications. We shall therefore consider only an implementation of 
POD in this paper which is non-intrusive (or a posteriori) and needs no access or modification of the 
source code.  However, it may be shown that the POD is by no means less efficient when 
considering the total number of computations needed for the reconstruction of the model. For a 
comprehensive description of the related theory we refer the reader to the works of [5][6][7][8].  
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Apart from a few matrix algebra manipulations, the algorithms are straight forward and may be 
applied with more or less efficiency to LS-DYNA or any other explicit finite element models.  We 
shall briefly present two applications for crash (Lagrangian) and for missile impact simulation 
requiring (ALE) solutions. Other applications such as safety or multi-physics are also typical 
candidates since they require a complete and simultaneous simulation of all model components. 
Notice that these applications are often very time consuming (such as crash barriers or airbag ALE 
or CFD simulations) irrespective of the objectives of simulation. Additionally the interest in the 
modelling of such computationally expensive components (missile, barrier, airbag) is secondary and 
the real objective (criteria) of the simulations are often structural (damaged parts) or human 
biomechanical response. Additionally while the inclusion of these models in a full model may be 
considered affordable, their applications for either direct or surrogate based optimization or 
parametric studies becomes computationally expensive and often prohibitive. 

2.1 The POD method 

In the following we shall present the basic steps of the POD method, which is a decomposition 
technique, allowing for real-time (on-board) solutions used in optimization or simulator technologies. 
The two solutions presented are generic and may be readily applied for other multi-physics 
applications such as coupled fluid/thermal-structure interactions. The engineering consequence of 
this decomposition is an encapsulation of the reduced model as two independent, uncoupled 
responses in space and in time of the original function which may be used in a full model as easily 
as a material law, a contact force or a loading-time function, etc.  
 
The first step is to provide a FE solution of a complete domain including all structures (physical 
domains) with full output available at the boundaries of the reduced model (i.e. contact zones, ALE 
interface, etc.). We shall refer to these output time-histories as Q(x,t). The basic idea behind POD is 
a simple decomposition strategy, allowing for the spatial and temporal domains to be handled in a 
decoupled manner and enabling the spatial-temporal response to be reconstructed via a 
multiplication of two uncoupled fields. Indeed we are looking for a decomposition of the type: 
 
Q(x,t) = q(x) . V(t)  
 
Once this decomposition is achieved, for any new position vector xnew, q(xnew) may be computed 
(via RDA – Redundancy Analysis - Kriging or RBF, etc. ) and subsequently multiplied by the V(t) 
matrix in order to obtain the new Q(xnew,t). The decomposition may be achieved via a singular value 
decomposition (SVD) of the matrix Qm,n . The algorithm is presented in (Fig.1:) where m represents 
repetitions of the response vector and n represents the recorded time intervals following an 
adequate  sampling (such as OLH – Optimal Latin Hypercube) of the space parameters x, or a PCA 
based method of the same samples (see Fig.2:), called the “POD snapshots”, using the 
autocorrelation matrix R=QTQ which is symmetric and positive definite or the matrix of information 
K=QQT notice that [Km,m] >> [Rn,n] with (m>n) which makes it computationally less efficient (note 
that both R and K share the same the eigenvectors).  
 

3 Applications 

We shall present a simple crash type application allowing for the reconstruction of complete time-
histories of a typical crash scene using only a few runs obtained via an Optimal Latin Hypercube 
design procedure. The “POD snapshots” method is used.  The reconstructed responses may then 
be used for further predictions, allowing for parametric studies or real-time simulations to be 
performed with little computational effort. A second ALE type application where the “POD SVD” 
method is used and will be presented during the oral presentation (omitted here for page limit 
considerations) and may be obtained by contacting the first author (see Fig.9:, Fig.11:, Fig.11:). 

3.1 "Formula Student" nose analysis  

In the following example the robustness of a “formula student” type vehicle in order to improve its 
impact bearing capacity was studied [9] (Fig.3:). The main crash criteria were considered to be 
related to, among other criteria, the acceleration of the head back of the vehicle (sensor 
acceleration points). This was considered to be linked to the response of the nose, registered at its 
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back side (normal force). A simple DOE type study was considered insufficient since the whole time 
response was needed for evaluations and not only peak values which could be obtained from some 
response surface method. The idea with the reduced model is to reconstruct the complete time-
history of the output (for parametric studies and optimization) based on a POD (snapshots are used 
here) methodology. 
 
The time history outputs were observed at 14 time increments over 2ms, (not to be confused with 
time steps). This number is relatively low and has only been chosen arbitrarily for demonstration 
purposes. In practice, more time increments – up to a reasonable factor of the total time steps – 
may be considered (Fig.4:).  Our objective is to reconstruct the whole time-history from these 
selected 14 time observations. 
 

3.1.1 Sampling and POD reconstruction 

Subsequently, an Optimal Latin Hypercube sampling (OLH) with 100 runs (6 variables/parameters, 

14 responses) was conducted allowing for variations of ±5% on design variables and environmental 

parameters. The nominal values were:  
 
Design Variables: 
 

Young modulus Elastic limit Thickness of selected elements 

70GPa 300MPa 1.6mm 
 
Environmental Parameters:  
 

Initial speed Chassis beam thickness Chassis shell thickness 

20m/s 3.2mm 3.5mm 

 
 
An output file (corresponding to the Q(x,t)(100,20) matrix) was recorded including x (6 input) and y(14 
output) . Among the 100 runs, 80 were used for the reconstruction and the remaining 20 were used 
for verifications and predictions ([x]80,6 & [y]80,14). The Snapshots method was used to compute the 

reduced basis. Analysis of the eigenvectors demonstrates that only 6 first eigenvectors provide 
~100% of the response necessary for reconstruction (Fig.5:). Since the norm of the eigenvectors 
(their “size”) are associated with the value of the eigenvalues, if we conserve [λ]5,5 then  [ϕ]80,14 is 

nearly equivalent to (approximated by)  [ϕ]80,5. 

 
We observe that the POD implementation reconstructs well the first 10ms while it approximates 
closely the rest, up to 20ms (Fig.6:). Note that what is an approximation here is not the POD itself 
but the RDA (regression type) model – and the low number of time steps, i.e. 14, adopted here for 
demonstration purposes - of the q(x) matrix and could be much improved via a Kriging or a RBF 
type model. One can plot an error estimate, showing that the reconstructed response is in good 
agreement with the initial FE simulation response (Fig.6:). 
 

3.1.2 POD Prediction 

 
It is now interesting to compare the POD predictive capabilities using the 20 remaining runs which 
were not used for the basis computation (we only use [ϕ]80,5 ). We shall use a simple linear regression (first 

order reconstruction – Fig.:8) in order to predict the remaining 20 outputs. Fig.7: presents the outcome showing very 
good correlation for an arbitrarily chosen run (out of 20) with an error magnitude of around 13%. The two 
algorithms are implemented in ODYSSEE package [10] and available for academic or industrial use. 
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4 Figures and Tables 

 
 
 

Fig.1: Model Reduction based on Singular Value Decomposition 

 

 

Fig.2: Model Reduction based on Snapshots method 
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Fig.3: LS-DYNA simulations showing that the nose absorbs nearly 67% of the choc energy 
within 18 ms  

 

Fig.4: Typical time history recordings of rigid wall force (behind the nose) recorded at 14 time 
instances 

 
 

Fig.5: Eigenvalues of the basis. Only 5 out of 14 need be retained for spatial basis (q(x)) 
reconstruction  

 

Step Eigenvalue Value  Cumulated eigenvalue Cumulated value in % 

1 λ1 17.8 λ1 38.3 

2 λ2 12.2 λ2+λ1 64.5 

3 λ3 5.9 λ3+λ2+λ1 77.3 

4 λ4 4.6 λ4+λ3+λ2+λ1 87.2 

5 λ5 3.5 λ5+λ4+λ3+λ2+λ1 94.9 

6 λ6 2.4 λ6+λ5+λ4+λ3+λ2+λ1 100.0000 

…. … 0.0000 …. 
i=1 i 

100.0000 

14 λ14 0.0000 
λ14+

),13 (λ ) 
i=1 i 

100.0000 
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Fig.6: Typical time history of rigid wall force reconstructed at 14 time instances (arbitrary 
selection of one among 80 runs used for basis construction) 

 

Fig.7: Typical time history of rigid wall force predicted at 14 time instances (arbitrary selection 
of one among 20 unused runs) 

 
 

 

Fig.8: ODYSSEE Reduced Modelling Application for a 1st and 2nd order reconstruction of the 
response
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Fig.9: Missile impact zone with 10 Million elements 

 

 

Fig.10: Missile impact zone replaced by its equivalent reduced model parametric studies reduced 
model to be used for parametric studies involving impact angle, velocity, mass, etc. 

 

Fig.11: Application of POD method to ALE LS-DYNA for real-time (flight simulator) missile impact 
simulation conducted by CADLM for MECASIF project 
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5 Summary 

We have presented a simple POD based methodology (snapshots and SVD) applicable to reduced 
modelling of explicit non-linear solvers for crash and ALE type simulations allowing for real-time, on-
board computing of complex problems.  
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