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Abstract 

An accurate prediction of springback in sheet metal forming processes requires complex hardening 
material models. In this research, numerical analysis of the springback in U-bending was conducted 
using the well-known Yoshida model, available and known as the YU model in LS-DYNA. This model 
has seven main parameters which describe the behaviour of the material as it undergoes metal 
forming processes. Initially, mesh sensitivity studies were conducted to derive a suitable mesh that 
represents an appropriate compromise between accuracy and computer time. Secondly design of 
experiment (DoE) was employed to make 30 combinations of two design variables (die radius and 
clearance) uniformly through a design space. Parametric optimisation studies were also conducted to 
investigate the influence of these variables and to make recommendations to minimise the springback. 
The results show that the blank element mesh density has a significant effect on the springback 
prediction. Additionally the results demonstrate that certain geometrical parameters have a significant 
impact in controlling the springback but that optimised values can be identified to minimise the effect. 

1 Introduction 

Sheet metal forming processes are widely used in the automobile industry. The most frequently used 
techniques are bending, stretching, stamping and other. In these sheet metal forming processes, 
defects such as rupture, wrinkling, galling and springback in formed parts might occur, whether during 
or after the process. The springback phenomenon is the most complex and challenging issue in 
industry. It is defined when the sheet metal is removed from the tools, the formed part tends to return 
to its original shape [1]. 
 
Over the last decades, many researchers have investigated the springback phenomenon in sheet 
metal forming processes. In particular Yoshida and Uemori have improved a model of large strain 
plasticity to predict more precisely the springback in sheet metal forming [2]. 
 
There are several factors that can control the springback in deformed sheet such as blank material 
properties, tooling configuration and/or process conditions [3]. For example, researchers have 
investigated the influence of die radius and clearance on springback of a deformed steel sheet [4, 5]. 
Investigators have also examined the influence of lubrication and clearance in springback during the 
square cup deep drawing process [6]. 
 
In the past many researchers have investigated the process of elastic-plastic deformation and they 
proposed many models but within small deformation. Sheet metal forming involves large deformations 
followed by an attempt to return to the blank‘s natural shape describing as springback phenomena. 
Recently, some researchers mentioned that for a precise prediction of springback, the Bauschinger 
effect should be taken into the account[2]. Few researchers investigated experimentally large-strain 
cyclic plasticity[7] , while many papers have been published on reverse deformation after the plastic 
deformation [8, 9]. Recently, Yoshida has successed doing cyclic tension-compression deformation 
experiments for sheet metal at large strain[2] 
 
The numerical model which describes the large deformation and nonlinear material behaviour is the 
main challenge of using any kind of simulation package for metal forming analysis. Many researchers 
have proposed models but most of them have short falls in a full description of material behaviour. 
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Some of these models are suitable for a small range of deformation and others do not take into the 
account the Bauschinger effect which is an essential aspect to predict springback phenomenon. In the 
last decade, good improvement in terms of a more precise prediction of springback has been 
achieved. Researchers have examined the influence of five different hardening models on springback 
prediction and they have concluded that the Yoshida model has acheived good agreement with 
experiment [10]. Therefore this model will be used in the present work to investigate the influence of 
certain geometrical parameters in the U-bending process which are the die radius and clearance and 
to optimize these parameters to minimize the springback. 
 
In a typical optimization problem, selected result responses are optimized by determining the best 
combination of design variables located in the design space. The design of experiment (DoE) 
approach is used to gain an accurate approximation of response surface which is called. Simulation of 
every possible set of the combination of these variables is complex. In such situation meta-modelling 
is frequently used reported in [11].The response surface method evaluates an objective function at 
several points in the design space to gain a good approximation [12]. Researchers have designed an 
optimum blank for sheet metal forming by using the interaction of high- and low fidelity models [13]. 
Other researchers have designed an optimization scheme to minimize the springback in L-bending 
[14]. They developed Gauss-Newton techniques by coupling the Abaqus/standard code with Python. 
In the prsent study the genetic algorithm method is used to optimize parameters to give the minimum 
springback in the U-bending process. 

2 Numerical Analysis 

2.1 Finite Element Model 

The U- bending process model consists of a punch, die, blank and blank holder. The whole assembly 
was modelled using 3-D quadratic shell elements as shown in Fig. 1. The punch, die and blank holder 
were considered to be rigid body while the blank was considered to be a deformable body. The 
baseline geometrical parameters are listed in Table 1. 
 
 

 

Fig. 1: U-Bending Model 

 
Table 1: Dimensions of the U-bending model 
 

Geometrical 
Parameters 

L D W M 
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(Pr) 

Blank 
thickness 

Clearance 
 

Dimension (mm) 148 50 30 112 4 4 1 1.4 
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2.2 Material model 

Many commercial FE codes gain constitutive model to simulate the mechanical behaviour of different 
materials. One of them is mixed isotropic-kinematic hardening model. Another one is by adding a 
linear component to the previous model. However, these models have limitations in predicting some 
aspects of material behaviour. For example Bauschinger effect, workhardening stagnation; when the 
rate of workhardening during large deformation is almost zero ,and the reduction in Young’s modulus 
in the case of unloading[2]. Also some researchers have suggested constitutive models which 
describes both Bauschinger effect, and workhardening  stagnation [15]. However, they do not pay 
much effort to stress-strain responses in the small scale re-yielding region which is essential to predict 
the springback[2]. 
 
In the recent past, Yoshida and Uemori [2] have achieved a successful model that can precisely 
predict springback. This model consists of two surfaces: a yield surface and a bounding surface. The 
yield surface of the kinematic hardening model is surrounded by bounding surface of mixed isotropic- 
kinematic hardening as illustrated in Fig. 2. In the other word the yield surface is fixed in its size but its 
centre moves with the deformation as the bounding surface is allowed to be change in both size and 
location [2].The yield function is expressed by: 
 

 
   

 

 
                    

(1) 

 
where s and α are the Cauchy stress and the backstress, respectively. Y denotes the yield surface 
radius. The bounding surface expression is as follwos: 
 

 
 

   
 

 
                        

(2) 

 
where β is the centre of bounding surface and B+R is its initial size with R being associated with 
isotropic hardening. 

 
Fig. 2: Yoshida model of two surfaces [2] 

 
This model contains seven material parameters (Y, C, B, Rsat, b, m, and h) where can experimentally 
be determined with help of some constitutive equations as follows: 

1. Y is simply the radius of the yield surface which is the elastic limit. 

2.  B, (Rsat+b) and m can be determined by equation (3) which comes from the evolution 

equation of the mixed isotropic- kinematic hardening of the bounding surface: 

       
     

                         
 

) (3) 
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Here       
     

 denotes the yield stress of the bounding surface under uniaxial tension as shown in Fig. 

3. R is the isotropic hardening stress and Rsat is the saturated value of the R at large plastic strain. m 
denotes the material parameter that controls the rate of isotropic hardening. b is also a material 
parameter. ε

p
 is plastic strain. 

 
3 b is found using equation (4): 

 

    
   

                
 

) (4) 

 
Here, βo is the kinematic hardening of the bounding surface at the point of reverse stress, see Fig. 3. 

  
 
 denotes the plastic prestrain. From the experiment    

   
 can be obtained as shown in Fig. 3. and the 

parameter m is found in the step 2, then it is easy to find b by using equation (4) 
 

4 Parameter C is determined from the stress strain curve of the transient Bauschinger 

deformation using  

 

 

  
 

   
          

    

 
              

    

 
   

(5) 

 
 

 
Fig. 3: The motion of a) The yield surface and b) The bounding surface under uniaxial forward-revers 

deformation [1] 

 
5 h parameter is determined by simulations of the stress-strain response and it varies from 0 to 

1. 

Also in the Yoshida model, the effect of plastic strain on Young’s modulus is taken into account by the 
following equation: 
 
                       (6) 

 
Here E is Young’s modulus and Eo and Ea are the Young’s modulus for the original and for the plastic 
region, respectively. γ and p stand for a further material constant and the plastic strain respectively. 
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The material are used in this study is high strength steel DP600 and the parameters of the Yoshida 
model for this material are shown in Table 2 as reported in [16]. 

Table 2: The Yoshida model parameters for DP600 [16] 

Y  
(MPa) 

B  
(MPa) 

Rsat  
(MPa) 

b 
 (MPa) 

C m h Eo  
(GPa) 

Ea  
GPa) 

γ 

360 435 255 66 200 26 0.4 206 152 
 

61 

 

2.3 Methods of analysis  

The U-bending process consists of two sequential operations; loading and unloading. The loading 
process is initiated as the blank sheet is clamped by the blank holder. Then, the punch is moved down 
to draw the blank sheet into the die cavity making a U-shape. Subsequentaly, the unloading process 
can be defined when the work piece is freed from any constrains. Two types of analysis are typically 
used to solve this kind of process: explicit analysis for the large deformation forming operation and 
implicit analysis for the subsequent low deformation unloading operation leading to springback [17] 
 
The boundary conditions assumed for this process were as follows:  

1. The punch is constrained in all rotations and translations in both direction X and Y. 

2. The blank holder is constrained in all rotation and displacements in both direction X and Y. 

3. The die is fixed in all degrees of freedom. 

4. The blank fixed along symmetry line in both x and y-direction for translation and ZX and ZO for 

rotation as shown in Fig. 1. 

The punch is moved at a rate of 2 mm/ms in the Z-direction until it reaches the end of the operation 
which is at 50.5 mm of punch displacement. 50 kN load is applied on the middle of the blank holder in 
the Z-direction. A one way surface to surface contact was used to define the interaction between 
punch, die, and blank and blank holder components. In this contact definition, the blank holder, punch 
and die were considered as the master and the blank was considered to be the slave surface. Static 
and dynamic coefficients of friction were assumed to be 0.1. 
 
In this study, the explicit method is firstly used to analyse the U-bending process. Then the implicit 
mode is utilized to calculate the springback that occurs in the blank during unloading process. In this 
implicit analysis, all constrains are removed from the workpiece so it is completly free to take up to its 
final deformation shape. 
 

3 Mesh Sensitivity Study 

3.1 Mesh definition  

In finite element analysis, the mesh density is an important parameter to obtain accurate results. A 
small element size for discretisation of the blank provides precise results. On the other hand, the finer 
mesh leads to increased computation time. During the U- bending process, a certain area of the blank 
experiences much more severe stress than the rest. Moreover as the blank width is much bigger than 
its thickness, the effect of changing the mesh in the Y direction is negligible. Based on the above 
consideration, the blank has been divided into three areas designated A, B and C as shown in Fig. 4. 
The mesh size in region B is constant and minimum. Beyond zone B, the element size in zone A and 
C is increased slowly up to each free end. The element aspect ratio in zone B is set as shown in Fig. 
4. 
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Fig. 4: The blank model for U-bending Simulation 
 

The sensitivity of the results to the mesh density of the blank has been investigated to achieve a 
balance between the accuracy of the result and computation time. Table 3 shows the six different 
mesh sizes of the blank for the U-bending model.  
 
Table 3: Different element size of the blank in U-bending and springback results 

3.2 Punch Force prediction 

The punch force versus its displacement has been plotted for the six different blank meshes as 
defined in Table 3. The trends are very similar for all meshes with slight differences in their behaviour. 
The punch force rises swiftly from the first contact point until it reaches almost 13 kN at 10 mm of 
punch travel. After that the punch force increases very slightly to the end of the operation.  
Fig. 5 shows fluctuated forces for meshes 1-3 and Fig. 6 shows consistent trends with reasonable 
fluctuation for the last three blank meshes. 

 
Fig. 5: Punch force versus displacement in U-bending process for meshes 1-3 
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Fig. 6: Punch force versus displacement in U-bending process for meshes 4-6 

3.3 Springback prediction 

The springback in U-bending first is identified by measuring the maximum z-displacement of the blank 
flange after the forming operation [10, 18]. In some cases; the calculation of the springback by 
measuring the maximum-z displacement is not sufficient. Fig. 7 (a) shows almost the same maximum 
z-displacement along the top side of the U-shape. However, Fig. 7 (b) displays different z-
displacement along the flange side of U-shape. Therefore the U-shape in both figures is different 
though the maximum z-displacement along the flange side is very similar. 
 
 

 
Fig. 7: Z-displacement for U-bending after the springback 

 
Another approach for measuring the springback is by calculating the exact angle that follows the 
springback action [14, 19] as illustrated in Fig 8. Two angles are considered which are θ1 and θ2. The 
angle of θ1 is between line AB and CD, whilst θ2 is identified as the angle between line CD and EF as 
can be seen in Fig 8. This study has utilized this second technique since it seems to be a more 
reliable methodology to measure the springback. 

 
Fig 8: Springback angles (θ1 and θ2) 

Table 3 shows a remarkable increase for θ2 and slight decline for θ1 from mesh 1 to mesh 4. However 
there is only a slight difference in the angles between mesh 5 and mesh 6 with a significant increase in 
elapse time for both the explicit (forming0 and implicit (springback) analyses. Therefore mesh 5 will be 
used for all further investigations. 
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4  Design of Experiments and Optimization  

In a typical optimization problem, selected result responses are optimized by determining the best 
combination of design variables located within the design space. The location of the selecting points is 
important to gain an accurate approximation of the response surface. In this study, the Design of 
Experiments (DoEs) approach has beeen used to locate there points. 
 
This study will investigate the influence of two design variables which are the die radius and 
clearance. Simulation of every possible set of the combination of these variables is complex. In such 
situations meta-modelling is frequently used [11]. This involves carrying out numerical analysis for 
certain combinations of design variables within a design space and fitting an approximate response 
surface to the actual results. In other words, the meta-modelling is used to provide an accurate 
response surface from a minimum number of simulations or experiments. 
 
In this study, an Optimal Latin Hypercube (OLH) Design of Experiments (DoE) is used to make 30 
combination of the two design variables uniformly through a design space that is determined by the 
upper and lower limit for each variable. The DoE is divided into two parts; one is a build model and the 
second is a validation model. The purpose of each model is to maximize their uniformity taking 
account of the space-filling properties of the designs. As a result two non-overlapping DoEs are 
obtained which are the union of build points and validation points. There are several approaches to 
generate the OLH using criteria such as integrated mean squared error, maximizing entropy[20, 
21]and maxi-min distance[22]. 
 
In this study, the PermGA algorithm reported in [11] is used to generate the OLH build and validation 
DoEs as uniformly as possible. This has the following physical meaning, the design space has points 
of mass unit and these points apply force on each other leading to a system that has a minimum 
potential energy. Using this method 30 combinations of the two design variables were uniformly 
distributed in a design space that is determined by upper and lower limit for each variable. The upper 
and lower limits for the two design variables are listed in Table 4. 30 points repersenting the 
combination set of die radius and clearance are uniformly distributed in the design space as shown in 
Fig. 9. 
 
Table 4 Upper and lower limits for the two design variables 

Variables Upper) Lower 

Die Radius (mm) 10.7 2 

Clearance (mm) 1.07 0.2 

 

 
Fig. 9: Build and validation points 

U-bending operations for the 30 selected points were simulated as described in section 2.3 using Ls 
Dyna software and the springback results are obtained. From this information, an approximation 
response surface of the springback within the design space was created using the moving least 
squares approximation method.  
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The response surface for the springback angles θ1 and θ2 is shown in Fig. 10 (a) and (b) respectively. 
Inspection of the thirty solutions showed that the die radius influences the springback angles much 
more than the clearance. The springback that represented by θ2 shows that the springback increases 
dramatically with increase of the die radius. Interestingly the springback angle θ1 has different 
behaviour with variation of the die radius. Fig. 10 (a) illustrated that the θ1 is highest at the lower limit 
of the die radius (2 mm) followed by a sharp decrease up to 6 mm of die radius then the angle 
increases again to the upper die radius limit. 

Finallty the genetic algorithm GA optimization technique is employed using Hyperstudy v11 of Altiar 
packge. The main objective is to find optimal design variables that provides angles closet to 90 
degrees or near. Table 5 shows the optimum design variables that leads to minimum springback 
angles. Also this table compares the predicted springback with the simulated one with mild error. 

 
Table 5: Comparsion of the predicted springback angles with the simulated one for the optimum 
design variables 

Design variables optimization Simulation Error % 

Die Radius (mm) Clearance (mm) θ1 θ2 θ1 θ2 θ1 θ2 

2 0.245 91.755 91.707 92.162 92.141 0.43 0.54 

 

 
Fig. 10: Response surface of springbacjk for  a) θ1 and b) θ2 

 

 
Fig. 11: The springback angles θ1 and θ2 for the optimum design variables 
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5 Conclusion 

The numerical modelling of the U bending processes was developed using the Yoshida material 
model availble in LS-DYNA. The mesh size of the deformable sheet is an important factor that 
influences the accuracy of the numerical results. Therefore this study conducted a mesh sensitivity 
study for the blank and selected an appropriate mesh size for the rest of the study. Important 
parameters such as die profile radius and clearance that influences the springback in U bending 
processes were investigated. A meta-modelling was used to generate suitable points of combination 
of die radius and clearance within the design space. These points were then simulated using LS-
DYNA. It was found that the die radius influences the springback angles much more than the 
clearance. The GA optimization technique was employed using Hyperstudy version 11 to search for 
the optimum springback within the design space. It is demonstrated that the optimum springback is 
when the die radius and clearance equal to 2 mm and 0.245 mm respectively for the particular 
operation considered. These values of the design variables wre then employed in LS-DYNA for 
validation purposes. The result showed that the springback is indeed minimized using this 
methodology. 
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