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Abstract: In this paper, we present an implementation technique that aims to easily incor-
porate the benefits of a nonlocal formulation to existing local constitutive models. In order
to avoid pathological mesh dependency, an approximation of the nonlocal strategy is adopted.
The technique is designed in such manner that the nonlocal extension of previously existing
local models is carried out straightforwardly, requiring only minor modifications in the local
routines. The implementation in LS-DYNA is depicted in detail for which a FORTRAN code
excerpt is provided. In order to validate the proposed nonlocal scheme, we have considered two
different constitutive models: one of them intended for the description of ductile materials, the
other one suitable for the simulation of fiber-reinforced composites. The numerical analysis of
different specimens shows that the proposed nonlocal strategy is able to eliminate spurious mesh
dependency under different stress states and using different material models.
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1 Introduction

In several practical engineering applications, the simulation of failure often requires the intro-
duction of suitable damage laws in order to capture the softening behavior generally observed
in experiments. These laws, which can be defined either through explicit or implicit functions
of some measure of strain or stress, have the ability of reproducing the global strength decay
appreciated on a typical force-displacement diagram. However, whenever some sort of material
softening takes place, the results are always pathologically dependent of the spatial discretiza-
tion. Accuracy is therefore dramatically reduced since finer meshes lead to nonphysical results
where dissipative variables (such as damage and plastic strain) localize into a single layer of
elements.

The aforementioned shortcoming can be conveniently overcome by the introduction of a non-
local enhancement. In the nonlocal strategy, the constitutive behavior ceases to be independent
of its neighborhood and a given local quantity (e.g. the equivalent plastic strain) is replaced
by an integral average within a certain prescribed radius of influence. This radius can be inter-
preted as a new material property, generally called as internal length, that dictates the size of
the damaging zone. In this context, Andrade et al. [2] recently presented an efficient algorithm
for the numerical implementation of a Lemaitre-based ductile damage nonlocal model. However,
the algorithm demands simultaneous access to all integration points of the mesh, a condition
not easily met in most commercial FE-packages used by the industry.

In the present contribution, we adopt an approximation of the nonlocal theory that is suitable
to be used with existing local models, requiring only little modification. The technique is de-
signed to be easily incorporated as a general user-defined feature in LS-DYNA. The shortcoming
of accessing the neighbor integration points at once is overcome by adopting an implementation
strategy that saves and uses information of the previous time step [3]. In a general sense, the
disadvantage of such approximated nonlocal formulation is the requirement of small time steps
for enough accuracy. However, this does not represents a problem in the present case since the
explicit integration scheme of LS-DYNA naturally demands very small time steps in order to
guarantee stable solutions. As a consequence, the results obtained with the present technique
are sufficiently accurate to attenuate the mesh dependency issue.

A methodology similar to the one presented in this paper has been already adopted by
Cesar de Sa et al. [3] in the context of a Lemaitre-based ductile damage model, where the
implementation in LS-DYNA has been presented in detail. In the present contribution, however,
we are extending the methodology to two other material models, where our intention is to
demonstrate the generality of the technique.

The first constitutive theory is a J2-based elastoplastic damage model for the description
of ductile materials. The second one is a recently proposed transversely-isotropic constitutive
model suitable for the description of fiber-reinforced materials [9]. Numerical simulation shows
that the nonlocal technique is also able to avoid the spurious mesh dependency for these two
different material models, proving that the proposed strategy is suitable for a wider spectrum
of applications.



2 Local Modeling of Damage

2.1 Ductile damage model

In this paper, we will adopt a constitutive framework similar to the one proposed by Engelen et
al. [4]. The model of Engelen and co-authors was formulated in such manner that nonlocality was
introduced through an implicit gradient approach. Their results have shown that the gradient
methodology is able to successfully eliminate pathological mesh dependency. Our intention by
adopting a similar constitutive model is to show that our nonlocal technique, yet to be presented
in this paper, has the same regularizing characteristics as Engelen and co-authors’ formulation.

We firstly introduce the constitutive equations within the local theory. The yield function
of the present ductile damage model is given by

Φ = q − (1−D(κ))σy(κ) (1)

where q =
�
J2(s) is the equivalent von Mises stress, s = σ− pI is the stress deviator, σ is the

stress tensor, p = 1
3trσ is the pressure, σy is the yield stress and κ is the accumulated plastic

strain. The scalar D(κ) is the local damage, which here is considered to be

D(κ) =
κ

κc
(2)

where κc is the critical value of accumulated plastic strain at which full material failure occurs.
Associative plasticity is assumed, therefore, plastic flow reads

ε̇p =
∂Φ

∂σ
= γ̇

�
3

2

s

�s� . (3)

Within the present constitutive framework, plasticity and damage are assumed to take place
respecting the conditions Φ ≤ 0, γ̇ ≥ 0 and Φγ̇ = 0.

The present ductile damage model has been implemented in LS-DYNA via user-defined sub-
routines (umat41) where the classical elastic-predictor/return-mapping scheme has been adopted
in the numerical implementation. In the algorithm, the following trial state

σtrial
n+1 = σn +De : ∆ε (4)

is initially assumed and plastic admissibility is checked using the yield function in Eq. (1).
If Φ > 0, then the following residual equation is solved for ∆γ through the Newton-Raphson
method:

r := qtrialn+1 − 3G∆γ − [1−Dn+1(κn+1)]σy(κn+1) (5)

where κn+1 = κn + ∆γ. When a certain prescribed tolerance is reached, the stress tensor is
updated as

σn+1 =

�
1− 3G∆γ

qtrialn+1

�
strialn+1 + ptrialn+1I. (6)



2.2 Transversely-isotropic elastoplastic material model for short fiber rein-
forced polymers

In contrast to metals, thermoplastic materials in general exhibit a strong pressure-dependent
material behavior, which results in different yielding in uniaxial tension and compression, under
shear and under biaxial loadings. Furthermore, the assumption of volume constancy during
plastification does not hold for thermoplastic polymers. Especially in the tensile range (uniaxial
and biaxial tensile stress states) this effect cannot be neglected. Due to reorientation of molecule
chains and due to fiber reinforcements, most thermoplastics also exhibit anisotropic material
behavior. This direction-dependent behavior does not only affect the plastic yielding, but also
the strain rate sensitivity. A material and failure model, aiming to predict these effects, is
therefore summarized in the following. A more detailed description is given in references [9] and
[10].

Yield surface formulation

The yield surface as a function of the transversely-isotropic invariants is formulated as

f = α1 I1 + α2 I2 + α3I3 + α32I
2
3 + α4 I4 + α42 I

2
4 − 1 (7)

with the yield surface parameters α1, α2, α3, α32, α4 and α42. The definition of the invariants
is given in [9]. Each of these parameters represents a loading state. The parameter α1 stands
for transverse shear, α2 for in-plane shear, α3 and α32 represent uniaxial compression and
tensile loading transverse to the preferred direction and the parameters α4 and α42 control
yielding in fiber direction in compression and tension. The yield surface parameters are directly
related to the current yield stress, given by the respective hardening curve for each stress state.
Thus, different yielding and hardening in uniaxial compression and tension transverse to the
fiber direction and in fiber direction as well as different yielding under in-plane and transverse
shear can be regarded. The hardening curves for each stress state, giving yield stresses vs.
corresponding plastic strain, can be directly fed via tabulated data in the LS-DYNA input deck.

In order to enable a realistic representation of plastic Poisson’s coefficients, a non-associated
flow rule is applied. The plastic flow potential, which gives the direction of the projection onto
the yield surface, is formulated as

g = β1 I1 + β2 I2 + β3I3 + β32I
2
3 + β4 I

2
4 − 1 . (8)

The numerical treatment follows an elastic-predictor/plastic-corrector scheme assuming an ad-
ditive decomposition of the strain increment. The stresses at the end of each time step tn+1

are
σn+1=σtrial

n+1−∆λn+1Ce :mn+1 , (9)

whereas σtrial
n+1 are the elastic trial stresses, Ce is the transversely-isotropic elasticity tensor,

∆λn+1 is the sought plastic multiplier and mn+1 is the direction of the plastic flow, given by
the plastic potential

mn+1=∂g(σn+1)/∂σn+1 . (10)



Inserting the stresses σn+1 into the yield surface formulation and enforcing the yield surface to
be zero at the end of the time step (consistency condition fn+1 = 0) formally leads to a nonlinear
equation in ∆λn+1 which is solved by the Newton-Raphson method. With the plastic multiplier
at hand, the plastic strains are updated at the end of each time step

εn+1 = εn+∆λn+1 �mn+1� . (11)

Failure criterion and damage formulation

The failure surface follows the same equation as the yield surface formulation, see Eq. (7).
Therefore, the experimentally identified ultimate strengthes in each loading state are required
for calculating the six failure surface parameters in Eq. (7). In particular, these are the fiber
parallel strengthes in tension and compression, Rt

� and Rc
�, the uniaxial tensile and compressive

strength perpendicular to the fiber direction, Rt
⊥ and Rc

⊥, and the material strength of transverse
shear R⊥⊥ and in-plane shear R�⊥. If the failure criterion is active, a degradation of the stresses
is performed using a damage approach, where damage is added into the model in an explicit
fashion through the linear expression

Dn+1 = α(εpn+1 − εfail) (12)

where α is damage-related parameter and εpn+1 is the norm of the plastic strain tensor. In the
equation above, εfail denotes a strain value, associated with failure, obtained by applying the
failure criterion. The stress tensor is then substituted by

σdam
n+1 = (1−Dn+1)σn+1. (13)

3 Nonlocal Formulation

Spurious localization is inherent to the structural problem whenever some sort of strain-driven
softening, formulated within the standard local framework, is present. This shortcoming happens
because the partial differential equations that govern the structural problem become ill-posed
when the hardening modulus is negative, for which uniqueness of solution with respect to the
spatial discretization is lost. This is the case of the damage models presented in the last sec-
tion. Consequently, the numerical results tend to unrealistically concentrate in a single layer of
elements as the mesh is refined.

A constitutive model formulated within the nonlocal framework, on the other hand, has
the major advantage of being effectively free of spurious mesh dependency and the size of the
localizing zone (dictated by the internal length) can be easily controlled. However, the nonlocal
method is very often avoided due to its nonstandard implementation requirements.

In this paper, our intention is to present a numerical implementation that aims to consid-
erably simplify the process of turning a local model into nonlocal in LS-DYNA. The technique
has been designed in such manner that the nonlocal enhancement has to be implemented in
LS-DYNA (via user-defined subroutines) just once. After this initial implementation, any user-
defined local material model implemented in LS-DYNA can be transformed into nonlocal in a
few minutes.



The cornerstone of the technique is based on the approximation of the nonlocal formulation
proposed by Tvergaard and Needleman [8]. To start with, let us consider that a generic variable
z is the desired local quantity to be turned nonlocal. Using the approximated nonlocal strategy,
the updated value of the local variable, zn+1, is re-phrased as

z∗n+1 = Knlzn+1 (14)

where Knl is a nonlocal penalty factor defined as

Knl =
z̄n
zn

(15)

In the equation above, zn and z̄n are respectively the local and nonlocal values at the last
converged incremental step. Therefore, the stress integration is performed locally where the
chosen variable z is penalized with the coefficient Knl. Note that, in order to obtain stable
results with the present strategy, it is imperative to keep the size of the time step small enough.
As a matter of fact, an explicit finite element framework naturally demands very small time
steps dictated by a given stability criterion. Therefore, the technique is perfectly suitable if the
explicit scheme is adopted.

The nonlocal average at a given spatial point x is defined as

z̄n(x) =

�

V
β(x, ξ)zn(ξ) dV (ξ) (16)

where β(x, ξ) is the non-local operator expressed by

β(x, ξ) =
α(x, ξ)�

V α(x, ζ) dV (ζ)
(17)

and α(x, ξ) is the weighting function, here considered to be the bell-shaped function, i.e.,

α(x, ξ) =

�
1− �x− ξ�2

�2r

�2

(18)

In the equation above, �r is the characteristic or internal length, which is a material parameter
that has to be experimentally determined.

Nonlocal ductile damage model

In the case of ductile damage model of Section 2.1, the updated damage assumes the form

Dn+1(κ
∗
n+1) =

κ∗n+1

κc
(19)

for which
κ∗n+1 = Knlκn+1 (20)

where Knl is the nonlocal penalty factor given by

Knl =
κ̄n
κn

(21)



Nonlocal transversely-isotropic model

In similar manner to the ductile damage model, the transversely-isotropic model of Section 2.2
has incorporated damage in an explicit fashion. To avoid spurious results, we will substitute
Eq. (12) by

Dn+1 = α(εp ∗
n+1 − εpfail) (22)

where
εp ∗
n+1 = Knlεpn+1 (23)

and

Knl =
ε̄pn
εpn

. (24)

4 Numerical Implementation in LS-DYNA

It is worth mentioning that LS-DYNA has the option of using nonlocal formulations through
the keyword MAT NONLOCAL since Version 960 [5]. Unfortunately, this option is restricted
to some elastoplastic models only and is not accessible for user-defined constitutive models.

Concerning the implementation of the proposed nonlocal technique, the first step is the
spatial discretization of the integral of Eq. (16). Adopting the well-known Gaussian quadrature,
we have

z̄i =
npgi�

j=1

wjJjβijzj (25)

where βij ≡ β(x, ξ) is the averaging factor that relates the Gauss points i and j respectively
located at global coordinates x and ξ. The quantities z̄i and zj are the constitutive variables
associated to the Gauss points i and j, respectively. The quantity wj is the Gaussian weight
and Jj is the Jacobian, both evaluated at the Gauss point j. Finally, npgi is the number of
Gauss points that lie inside the nonlocal volume of interaction measured from point i. In the
numerical implementation, z is substituted by the associated constitutive variable according to
the model that is enhanced with nonlocality.

In order to facilitate comprehension, a schematic flowchart for the implementation of the
nonlocal technique in LS-DYNA is depicted in Figure 1. In Appendix A, we have listed a
FORTRAN code excerpt with the main steps of the implementation in file dyn21.f. Two main
steps are need for the implementation of the nonlocal strategy. The first one concerns the
computation of the factors wj , Jj and βij of Eq. (25). These factors are merely geometrical1,
i.e., they depend on the finite element mesh itself and not on the material model. Therefore,
once this step has been implemented, it can be re-used whenever the nonlocal formulation is
activated.

The second step concerns the computation of the nonlocal penalty factor, Knl. Since it uses
the local values of the previous time step, the local variable has to be stored in array var loc

after calling the user material routine umat41. Note that in the code excerpt of Appendix A
the arrays var loc and var nonloc contain the local and nonlocal values of every element of

1In order to compute the nonlocal factors, one needs to have the element connectivities and the nodal coordi-
nates.



Knl = z̄n
zn

βij

Figure 1: Schematic flowchart of the implementation of the nonlocal strategy.

the mesh. The statement SAVE var loc guarantees that the information stored in var loc will
be available in the next time step. It is important to remark that the calculations performed
for the computation of the nonlocal values (through the discretized integral of Eq. 25) and of
the nonlocal penalty factor are the same for any material model. The only difference is which
variable is used in these calculations. For instance, in the case of the ductile damage model of
Section 2.1, one needs to store the updated accumulated plastic strain, κn+1, in var loc. In the
case of the transversely-isotropic model of Section 2.2, the updated values of the plastic strain
norm are saved in var loc every time step.

It is also worthwhile emphasizing that the present nonlocal technique can be employed either
in scalar or in vectorized LS-DYNA implementations. Thus, the advantages of parallel processing
are not lost within the present nonlocal framework.

5 Examples

5.1 Ductile damage

We first assess the nonlocal strategy with the damage model of Section 2.1. Therefore, we
simulate two specimens commonly used in the experimental determination of the properties of
metals (see Figure 2). The first specimen can be simulated using an axisymmetric formulation
meanwhile the second one can be analyzed considering a plane strain state. It is worth mention-
ing that both specimens deliver similar triaxiality ratios at the critical region (0.7 � p/q � 0.8);



Figure 2: Geometry of the specimens for the ductile damage analysis.

however, the value of the Lode angle is different (i.e., around 1.0 in the axisymmetric specimen
and about 0.0 in the plane strain one). As discussed in other references (e.g. in [6]), not only
the triaxiality but also the Lode angle plays an important role in the characterization of the
stress state and also in the failure onset. The specimens have been considered to be made of
steel (E = 200 GPa, ν = 0.3) with a yield stress function given by σy(κ) = 700 + 300κ0.3 MPa.

The damage contours resulting from the simulation of the axisymmetric and plane strain
specimens are respectively given in Figures 3 and 4. The force-displacement diagram is also
plotted for both specimens (see Figure 5). Close inspection on these figures reveals that spuri-
ous mesh dependency is much stronger in the plane strain specimen than in the axisymmetric
one. This fact has also been reported by Andrade et al. [1] who compared local and nonlocal
models based on the constitutive theories of Lemaitre and Gurson. Note that those materials
models are quite different from the one employed in the present analysis. Even so, the general
conclusion that a stress state with Lode angle around 0.0 renders more pronounced patholog-
ical mesh dependency persists. Finally, it is also evident from the results that the proposed
nonlocal technique has effectively eliminated the spurious mesh dependency associated with
strain-softening.

5.2 Fiber-reinforced materials

In order to further assess the proposed nonlocal technique, we simulate three specimens com-
monly used in the experimental determination of the properties of fiber-reinforced materials
(see Figure 6). The transversely-isotropic material model of Section 2.2 is then adopted for
the numerical analysis. The selected specimens comprise three different stress states, namely
tension, compression and shear. Each specimen has been discretized with three different mesh
refinements in order to verify if the nonlocal formulation is able to prevent spurious results.

In Figure 7, the results for the tension specimen are illustrated. Clearly, if the local theory
is assumed, the numerical solutions become highly mesh dependent when the softening regime
takes place. The nonlocal solution, on the other hand, is able to provide mesh-insensitive results
since damage spreads over the elements at the central region. The results for the shear specimen
are provided in Figure 8. We observe a very accentuated mesh sensitivity of the local solution,
where damage tends to concentrate into a single layer of elements. When the nonlocal strategy is



(a) (b) (c)

(d) (e) (f)

Figure 3: Damage contours for the axisymmetric specimen: (a–c) local; (d–f) nonlocal.

(a) (b) (c)

(d) (e) (f)

Figure 4: Damage contours for the plane strain specimen: (a–c) local; (d–f) nonlocal.



(a) (b)

Figure 5: Force-displacement diagrams: (a) axisymmetric specimen; (b) plane strain specimen.

(a) (b) (c)

Figure 6: Specimens for (a) tension, (b) compression and (c) shear test.

activated, the spurious mesh dependency is prevented, rendering more physically sound results.
Finally, Figure 9 depicts the results obtained in the compression test. Again, pathological mesh
dependency is evident within the standard local theory, which has been significantly alleviated
with the use of the nonlocal formulation.

6 Conclusions

In this paper, a strategy for the implementation of nonlocal models in LS-DYNA has been
presented. The technique has been designed to be generally applicable to several user-defined
material models, requiring only little modification in the original local routines. Two different



(a) (b)

Figure 7: Results for the tension specimen: (a) damage contours; (b) force-displacement dia-
gram.

(a) (b)

Figure 8: Results for the shear specimen: (a) damage contours; (b) force-displacement diagram.



(a) (b)

Figure 9: Results for the compression specimen: (a) damage contours; (b) force-displacement
diagram.

constitutive models, one of them suitable for the description of ductile metals and the other one
intended for the simulation of fiber-reinforced materials, have been coupled with the present
nonlocal technique. The numerical analysis has demonstrated that the nonlocal strategy has
been able to prevent unlimited localization and physically sound results have been obtained.
It is important to mention that, once the general routines of the nonlocal scheme have been
implemented, the nonlocal extension of the aforementioned material models was straightforward.
Thus, the obtained mesh-insensitive results and the generality of implementation make the
present nonlocal technique a strong candidate against other competitive regularization methods.
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Appendix A

An excerpt of the FORTRAN code for the implementation of the nonlocal strategy in LS-
DYNA as a user-defined option is provided. Only the main steps have been listed and the code
is intended to serve as a general guide. The implementation has to be incorporated in dyn21.f.



SUBROUTINE urmathn (...)

....

COMMON/bk06/idmmy,iaddp,ifil,maxsiz,ncycle,time(2,30)

....

! Declare dimensions for nonlocal formulation

DIMENSION betaij(...), var_loc(mxelem), var_nonloc(mxelem)

DIMENSION connect(mxelem,8), coord(mxnode,3)

! Save data for the next step

SAVE betaij, var_loc, connect, coord

....

! Get connectivities and nodal coordinates (only at cycle #1)

IF(ncycle.EQ.1)THEN

CALL get_connectivities (..., connect ,....)

CALL get_coordinates (..., coord , r_mem(dm_x) ,...)

ENDIF

! Compute nonlocal factors beta_ij (only at cycle #2)

IF(ncycle.EQ.2)THEN

CALL compute_nonlocal_factors (..., betaij , connect , coord ,...)

ENDIF

! Compute nonlocal variable (e.g. at every cicle)

IF(ncycle.GE.2)THEN

CALL compute_nonlocal_variable (..., betaij , var_loc , var_nonloc ,...)

ENDIF

....

DO 90 i=lft,llt

! Get external element ID (solids)

ielem=lqfinv(nnm1+i,2)

! Compute penalty factor K

factor_k=var_nonloc(ielem)/var_loc(ielem)

....

! Local user material routine

41 CALL umat41 (..., factor_k)

....

! Store local variable to be used in the next step

var_loc(ielem)= hsv(...)

....

90 CONTINUE

....

END SUBROUTINE urmathn
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