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Summary: 
 
The robustness of production processes and the quality of resulting products suffer from variations in 
important material and process parameters, geometry and external influences, which can have 
substantial and critical influences. Therefore these variations have to be analyzed and transferred over 
process steps in order to achieve considerably better forecasting quality. 
We developed the PRO-CHAIN strategy for statistical analysis of sensitivity and stability as well as 
multi-objective robust design-parameter optimization of whole process chains, even for simulation 
results on highly resolved grids. PRO-CHAIN constructs an ensemble of simulation results; this data 
base reflects local variations of functionals. Newly developed PRO-CHAIN components deal with 
transforming and ensemble compression of the data base via a fast principal component analysis with 
user-controlled accuracy. Essential features are the classification of design parameters into 
importance and nonlinearity classes in order to reduce the design space and to get an adequate 
accuracy for an efficient optimization. 
In this paper we address the importance of this classification and appropriate kinds of classification 
measures. 
Another main novel PRO-CHAIN component is the fast and accurate interpolation of new designs on 
the whole grid. This interpolation works also for nonlinear applications like crash if the design of 
experiments is adequate for a high-quality metamodel. The interpolation is based on a nonlinear 
metamodel with radial basis functions accelerated by a specialized principal component 
decomposition. 
Summarized, PRO-CHAIN is now able to fully locally analyze a chain consisting of several process 
steps with regard to sensitivity and robustness and to predict new designs with user-controlled 
accuracy. In each step, the influence of parameters onto criteria is classified and sensitivity is 
measured. PRO-CHAIN is able to propagate the essential scatter due to parameter uncertainty locally 
over the steps, keeping the necessary number of simulation runs small. Additionally, PRO-CHAIN 
allows for predicting new designs fully locally, allowing for immediate answers to what-if scenarios, 
without additional time-spending simulation runs. Thus PRO-CHAIN is a very efficient strategy for 
statistical analysis of process chains, involving parameter uncertainties, in order to get a robustly 
optimized solution. 
Recently, we integrated the efficient interpolation method described into DesParO along with LS-
DYNA d3plot readers/writers: on one hand, as a so-called “mixing functionality” for constructing and 
dumping interpolated results, on the other hand into the novel DesParO Geometry Viewer. 
Now, DesParO allows for an interactive exploration of the design space, connected with direct 
interpolation and visualization of the new design and its functionals, like thickness, effective plastic 
strains and damages as well as statistical measures, locally on the whole grid. 
Results are presented for the forming-to-crash process chain for a ZStE340 metal blank of a B-pillar. 
In detail, results of importance and nonlinearity classifications in each process step are shown as well 
as the prediction of new designs by means of DesParO. 
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1 Motivation 

During the fabrication of products, material and process parameters (e.g. damage parameters, friction 
and forces), geometry and also external influences can vary substantially. These variations can have a 
substantial, even critical influence on the robustness of production processes and the quality of 
resulting products. Analyzing governing influences of the variations and possibly minimizing them 
belongs to the most challenging research and development tasks today. This is especially true for the 
consideration of whole process chains, for example car parts with a potentially critical influence in 
crashes, as, for instance, the B-pillar, consisting of several formed and connected blanks.  
Thus, there is a high need in the industry for a strategy with coordinated, efficient software modules for 
statistical analysis with sensitivity and robustness aspects and multi-objective robust design-parameter 
optimization of whole process chains. 
Commonly, the last step of a process is still considered separately. Partly, at least first information 
from the history is integrated, but without variations. However, considerably better forecasting quality 
of numerical simulation and optimization can be achieved if not only the history of the process is 
included in the simulation of the last step as completely as possible, but also variations of decisive 
parameters are taken into account and transferred over the steps. 
The sources of different behavior have to be taken into account as early as possible, that means the 
pre-history of the process has to be considered within the simulations. Statistical analysis and robust 
optimization have to start as early as possible in the process. An example of different behavior due to 
parameter variations is shown in Figure 1. 
 

 
Figure 1: Extreme simulation results (interplay of crack with dent) caused by parameter variations 

(most relevant one here: d3-10% vs. d3+4%). 

In Section 2, we briefly describe the PRO-CHAIN strategy which performs different analysis steps 
addressing stability, sensitivity, robustness, and optimization aspects. The methods are based on 
appropriately constructed ensembles of simulation results. 
Newly developed methods and strategies for sensitivity analysis and reduction of the design space are 
discussed in Section 3, especially the characterization of design parameters into nonlinearity and 
importance classes is presented. In Section 4 we focus on the interpolation and visualization methods 
with the SCAI software DesParO, which allows for direct preview of results belonging to a new set of 
design parameters. In Section 5, we demonstrate PRO-CHAIN for a ZStE340 micro-alloyed metal 
blank of a B-pillar, a decisive part with a potentially critical influence in car crashes. In detail, results of 
importance and nonlinearity classifications in each process step are shown as well as the prediction of 
new design by means of DesParO. Section 6 concludes the paper and gives an outlook on future 
developments. 

2 The PRO-CHAIN Strategy 

The PRO-CHAIN strategy can be applied in many application areas after a suitable adaptation to 
specific data formats and robustness criteria, in particular. Exemplary applications in automotive 
engineering include the forming-to-crash and casting-to-crash process chains, chains of forming steps, 
forming/casting-to-NVH etc. Applications from the semiconductor industry include the process-to-
device and device-to-circuit simulation. 
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Several components have recently been developed (see [6]) and integrated into PRO-CHAIN that 
allow for iteratively building, handling and transforming a data base reflecting local variations of 
functionals (e.g. local thicknesses) even on highly resolved simulation grids. These components can 
be used for (single processes or) process chains consisting of two and more subsequent processes. 
Variations to be approximated, characterizing the output of a process step, result from variations of 
input parameters of the first process step, in particular. 
 
Exemplary, for a basic forming-to-crash process chain, Figure 2, the strategy consists of the following 
main steps and software tools (in brackets): 
 

 
 
Analysis of the first process step: Forming scenario 
The first step of the process chain considered here is a forming (deep drawing) scenario. The following 
steps are performed for its analysis: 

• Physical experiments (with specimens and components) for obtaining information on 
parameters for material models and realistic variations (see [1], [8]). 

• Setup of the concrete material model to be used (IWM Bi-Failure, see [2], [4], [8]). 
• Forming simulations (LS-DYNA). An ensemble of simulations is performed based on a basic 

design of experiments (DoE), as for instance a center design and lower and upper bounds 
for variations per parameter. 

• Parameter sensitivity analysis and iterative construction of data base (DesParO [12]), see 
Section 3. 

• Comparisons with physical experiments (see [1], [8]) for simulation validation. 
• Multi-objective robust design-parameter optimization (DesParO). 

In case that simulation results do not live on the same grid, a reference grid has to be specified and 
the functional values are transferred by means of an interpolation/restriction/approximation method. 
 
Transformation of the database 
For transforming the constructed data base (output of the forming scenario) to serve as an input data 
base for the next step in the process chain, namely the crash scenario, the following two steps are 
performed:  

• Compression of the data base. 
• Mapping of the data base (ensemble of special functionals constructed) and setup of the new 

data base. 
The mapping can employ any suitable interpolation or approximation method. Here, we use the 
SCAImapper [13]. In general, the quality of the mapping has to be measured. Errors resulting from the 
mapping shall be considerably smaller than the variations resulting from the previous process step. 

Figure 2 : Process chain 
forming-to-crash: simulation 
types (in orange), typical kinds 
of variations to be dealt with 
(in blue), software tools (in 
green) supporting sensitivity 
and robustness analysis as 
well as multi-objective robust 
optimization (DesParO), 
mapping (SCAIMapper) and a 
backtracking of instabilities in 
crash simulations (DIFF-
CRASH). For forming and 
crash simulations, LS-DYNA 
is employed, for instance. 
Material models such as 
IWM’s BI-FAILURE can be 
used. 
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From the new data base, local thicknesses, effective plastic strains and damages along with their local 
variations can be reconstructed to be used as inputs for crash simulations. Note that the crash grid is 
usually coarser than the adaptively refined grid resulting from the forming simulation. In addition, 
several parts are usually cut from the formed (e.g. deep-drawn) component. 
 
Analysis of the crash scenario 
The second step of the process chain considered here is a crash test. The following steps are 
performed: 

• Crash simulations (LS-DYNA). 
• Stability analysis (DIFF-CRASH [9], [10], [12]), that means a detailed analysis of instabilities 

as well as their backtracking. 
• Sensitivity analysis and iterative construction of data base (DesParO). 
• Comparisons with physical experiments (see [1], [8]). 
• Multi-objective robust optimization of the whole process chain (DesParO). 

DesParO is a tool for metamodeling, exploration and optimization. Several features have been 
recently developed, useful for the overall strategy, in particular, fully local sensitivity analysis for sets of 
design-parameters together with their scatter, more global measures for robustness and correlation, 
adaptive and hierarchical metamodeling, an improved global-local robust multi-objective optimizer as 
well as a mixing (interpolation) method for functionals locally on the whole grid, and their visualization, 
see also Section 4. 

3 Sensitivity Analysis and Ensemble Compression 

Among the most decisive steps of the overall strategy are the classification approaches [11], [6]. Each 
parameter is characterized into one or more classes. This step is mostly decisive for the accuracy of 
the results and the remaining computational effort, because it highly influences the iteratively extended 
DoE and therefore the number of simulation runs needed in the next process step. 
A classification of design parameters into importance classes is necessary to choose the parameter 
variations which are highly influencing the chosen functional (e.g. damage). In the case that a variation 
of a certain parameter do not change the functional at least to a certain amount, the respective 
parameter variation can be omitted. At the other hand, if the variation of a certain parameter highly 
influences the chosen functional, it is absolutely required to describe the distribution of the parameter 
as completely as possible and to transfer all information to the next process step, in order to get a high 
forecasting quality. Additionally we have to investigate the nature of the behavior of parameter 
variations onto the functional. If the parameter influences the functional in a linear way, 3 simulations 
will be enough to get a low interpolation error. If the behavior is nonlinear, we need to extend the DoE 
in order to approximate the functional appropriately. 
 
The classification strategy itself can proceed in several steps. In the first step, parameters which show 
a linear (or only a slightly nonlinear) and small impact are sorted out. In a second step, parameters 
showing larger nonlinearities can be characterized in more detail (by means of appropriate additional 
simulations), prior to an importance classification against the linearly (or slightly nonlinearly) reacting 
ones. This strategy assures that the number of simulation runs is kept small, while the accuracy, 
especially at nonlinearly influenced parts of the domain, remains sufficiently high. Additionally the user 
retains the overall control of both, required accuracy and computational effort, which are, of course, 
positively correlated with each other. 

3.1 Nonlinearity Classes 

On the one hand, parameters are classified according to a measure of nonlinearity for an impact of 
their variations per functional. The measure can be based, for instance, on comparison of the entries 
of the approximated Jacobian and Hessian matrix (partial derivatives of first and second order of the 
dependency of a functional on parameter variations), see [6]. Another possible nonlinearity measure 
can be based, for instance, on the spectral radius of the approximated full Hessian matrix compared 
with the Jacobian matrix [6]. 
Parameters can be sorted into two or more classes depending on the concrete measure used. 
Approaches for decomposing the design space into several domains and applying different measures 
per domain can be used. This is recommended for getting a higher accuracy in domains which are 
highly influenced by the application, e.g. the crack and dent areas in crash simulations, see also 
Section 5. 
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3.2 Importance Classes 

On the other hand, each parameter is classified according to its importance compared to the other 
parameters at hand. The measure can again be based on values of the Jacobian matrix, for instance, 
but now by means of a measure which compares congenerous values, see [6]. Again, parameters can 
be sorted into two or more classes depending on the concrete measure used. Domain decomposing 
strategies described for nonlinearity classes can be used as well. 

3.3 Ensemble Compression 

Due to an efficient data processing, huge data bases (i.e. an ensemble consisting of a few hundreds 
of simulation results on grids with more than one million nodes, several functionals and a few 
hundreds time steps simultaneously) can be processed quickly on standard multi-core computing 
equipment. Large random fields can therefore be directly analyzed and global as well as local impacts 
be detected, [11]. Here, we analyze three output functionals: thicknesses, effective plastic strains and 
damages. 
In addition, the simulation data base can be reduced (ensemble compression) with user-controlled 
accuracy. Examplary, a principal component analysis (PCA) can be used. Its singular value 
decomposition (SVD) of the data matrix serves as an ensemble compression, [6]. Together with 
Parseval’s criterion, only the modes necessary for achieving a user-specified tolerance (user-defined 
norm) are set up. The ensemble compression can be applied in each process step, efficiently reducing 
computational effort and memory requirements. 

4 Interpolation of New Designs 

For designing new products and setting up respective production processes, an engineer may want to 
test and analyze a lot of different designs, resulting from different sets of design parameters, while 
taking into account variations of each design parameter. 
A brand-new component of PRO-CHAIN supports fast and accurate interpolation and visualization 
even of highly-resolved functionals for new designs along with their local variations. Therefore, PRO-
CHAIN helps you to answer a lot of what-if scenarios, without additional time-spending simulation 
runs. You only have to assure that the set of design parameters is located within the parameter space 
covered by the previously applied DoE. 
The interpolation is based on a nonlinear metamodel with radial basis functions accelerated by a 
specialized principal component decomposition as used for ensemble compression (Section 3.3). 
Therefore, the interpolation works well also for nonlinear applications like crash, if the design of 
experiments is adequate for a high-quality metamodel. 
The interpolation procedure has been integrated into DesParO as “mixing functionality” as well as into 
DesParO’s Geometry Viewer. In particular, a reader and writer for the LS-DYNA d3plot format is 
available. We support ASCII- as well as binary-format files. The mixing functionality of DesParO is 
very fast due to an efficient data processing: to interpolate a functional consisting of 84,000 nodal 
values and 100 time steps tooks only 0.35sec on an standard Linux AMD dual core 2.6GHz PC. 
 

   
Figure 3: DesParO GUI with novel Control, Explorer and Geometry Viewer components shown. 
Visualization of effective plastic strain connected with interactive exploration of the design space. 
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DesParO allows for an interactive exploration of the design space, connected with direct interpolation 
and visualization of the new design and its functionals, like thickness, effective plastic strains and 
damages, along with their variations, locally on the whole grid. 

5 Results 

The PRO-CHAIN strategy has successfully been tested on a ZStE340 micro-alloyed blank of a B-
pillar, see [1] - [5] for first discussions and [11] for additional details. Especially detailed results of the 
novel components of PRO-CHAIN are presented in the following. 
The steel sheet with a specified thickness of 1.75mm was characterized with experiments on different 
specimens [4], [8], and the model parameters were determined. 
In the first process step, namely the metal forming (deep drawing), several material and process 
parameters have been considered. In total, 15 design parameters have been varied for a detailed 
analysis, see Table 1. The range of variations is also indicated there. The range of values for each 
parameter reflects variations arising in practice (experimental results). 
An experimental validation of the material and damage model was made by means of a component 
test. To achieve a combination of bending with superimposed tension, the B-pillar was supported at 
both ends by revolvable bearings. The load application occurred path-controlled (see e.g. [2], [8]). 
 

Table 1: Overview on design parameters along with their range of variations (minima/maxima; 
distribution not shown) for the metal blank and its forming process. 

Parameter 
Class 

Parameters Range of 
Variation 

damage d1, d2, d3 
dshear1, Ttrans 

±20% 
±20% 

hardening k, n, e0 ±10% 
shell thickness t ±10% 
anisotropy 
coeff. 

r00, r45, r90 ±10% 

friction µ ±50% 
binder force FORCFN ±10% 
drawbead force DFSCL ±10% 

5.1 Numerical results for the forming step 

The sensitivity analysis reveals two important material parameters and three important process 
parameters. The data base can be reduced to a size of three to eight times the size of one simulation 
result, depending on the desired accuracy. The relevant simulation data for the mapping consist of 
local distributions of thicknesses, strains and damages. In particular, taking local damages and their 
variations into account has turned out to be a crucial point in order to achieve simulation results 
considerably more realistic compared with physical experiments. 
The mapping has been carried out by means of the SCAIMapper. Several mapping scenarios have 
been compared, in order to analyze the effect of taking local distributions of thicknesses, strains and 
damages of the forming step into account in a step-wise fashion. 
The results of the parameter sensitivity analysis confirm the need and the quality of the developed 
material model. Comparisons with specimen tests show that the novel material model improves the 
quality of the forming simulations considerably. Comparisons of the component (crash) test results 
with simulations show that, in particular, including the damage information from the forming step as 
well as variations of thicknesses, strains, damages caused by parameter variations increases the 
forecasting quality of numerical simulation considerably (see also [2], [8]). A comparison of the 
scenarios with and without consideration of thicknesses, strains and / or damages of the forming 
process, Figure 4, has shown a high influence of the fully mapped data and their variations, especially 
in critical regions of the B-pillar blank. 
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Figure 4: Differences between crash results for the scenarios “without mapping” and “with mapping of 

local thicknesses, strains and damages”, exemplarily for a variation of the d3 parameter by +20%. 
Differences in effective plastic strain (left) and differences in damage (right) are shown. 

5.2 Numerical results for the crash step 

First, a sensitivity analysis of the crash step and an importance ranking as explained in Section 3.2 
has been performed. This step adds three parameters (thickness, d2, d3) to the original set of five 
important parameters (r90, k, process parameters) stemming from the forming step, see Figure 5. Of 
course, if more parameters are retained in the analysis, a higher accuracy could possibly be reached, 
but with the drawback of more simulations needed. Here, a global importance measure for the whole 
B-pillar, based on Jacobian values, has been applied. 
 

 
Figure 5: Importance classification of design parameters of the crash step: 

thickness, d2 and d3 are the most influencing ones. 

The new methods described in Section 3 allow for a further ranking into nonlinearity classes. In 
particular, they provide approximations of statistical measures, locally (per node in space and time) on 
the whole simulation grid, if more simulations are performed and taken into account. 
The parameters are classified according to a measure of nonlinearity for an impact of their variations 
per functional. Figure 6 shows exemplarily the classification of the damage parameter d3 into 
nonlinearity classes for an impact of their variations onto the damage functional. The parameter d3 is 
one of the most important design parameters, which controls a part of the BI-FAILURE damage model 
[2]. In detail, Figure 6 shows, that the absolute values of the approximated first derivative (Jacobian 
matrix) are much smaller than the absolute values of the approximated second derivative (Hessian 
matrix), especially in the critical regions of the B-pillar. This is also indicated by the applied measure, 
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which shows highly negative values (blue color) in the critical regions of the B-pillar. Here, negative 
values indicate a nonlinear influence of the classified parameter onto the functional. 

 
Figure 6: Classification of parameter d3 into nonlinearity classes. Approximated first derivative w.r.t. d3 
(left), approximated second derivative w.r.t. d3 (middle), and a measure of nonlinearity (blue color: 
nonlinear influence) based on the first and second derivatives (right). 

Also for the important d2 parameter a stronger nonlinear behavior is found with the classification 
measures. Therefore, we will concentrate exemplarily on these parameter d2 and d3 in the following, 
which also have the highest nonlinear influence of the important set of parameters onto the chosen 
functionals in the crash step. 
 
The force-displacement diagrams resulting from the variation of d3 and d2 over the whole forming-to-
crash process chain are very different for different simulation runs, which further confirms the 
nonlinear influences of parameter variations. Figure 7 and Figure 9 illustrate, for instance, the large 
effect of variations of d3 and d2. 
Qualitatively similar results are obtained when analyzing other influencing parameters. The entirety of 
parameter variations yield a force-displacement corridor similar to the one shown in Figure 7. The 
corridor is not reduced considerably for smaller parameter variations, cf. Figure 9. Even relatively 
small parameter variations thus influence the crash results substantially here. 
 

  
Figure 7: Variation of the d2 and d3 parameter, taking the forming history into account, leads to a high 
variation range of results, as shown in the force-displacement diagrams above. Exemplarily, on the left 
for the d2 parameter, minimum per displacement value (green), maximum per displacement value 
(blue) and initial d2 are shown, and on the right for the d3  parameter, d3 + 20% (pink), initial d3 
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(yellow), d3 - 20% (green), minimum per displacement-value (red), maximum per displacement-value 
(blue) are shown. 

A further sign of the nonlinear influence of the parameters is the different behavior of mean and 
median, as shown in Figure 8. Therefore, methods taking nonlinearities into account are necessary 
here, particularly for analyzing critical regions around the crack and dent. 
 

        
Figure 8: Mean (left) and median (right) of damage values for ensemble of crash simulation results. 

Robustness measures derived from statistical functional on the simulation grids should use medians 
and quantiles instead of means and standard deviations. 
 

    
Figure 9: Maximal force, divided by overall maximum, against variation of the d2 parameter (left), 
respectively variation of the d3 parameter (right). 

The large corridor arising in the most decisive part of the ensemble of force-discplacement diagrams 
clearly shows that an optimization process taking global criteria such as maximal force (Figure 9) into 
account cannot be expected to produce reasonable results here. The development of a novel set of 
optimization criteria including robustness measures seems necessary. 
 
The interpolation of new designs, described in Section 4, is also tested and validated with simulation 
runs for several parameter sets. Since even relatively small parameter variations influence the crash 
results substantially, we show an example of variation of parameter d2-2% in Figure 10. On the left 
side the locally interpolated damage values are shown. A simulation run with parameter d2 varied by  
-2% has been performed and the obtained results have been compared in order to validate the 
DesParO mixing functionality. The relative error compared to the simulation result is shown in Figure 
10 on the right. The relative error is very small, <1-2%, almost everywhere. Only in single points the 
error is higher. The interpolation quality can further be improved by taking more simulation runs into 
account. 
 
The results for the blank can be summarized as follows. Including the pre-damage information from 
the forming step as well as variations of thicknesses, strains, damages caused by parameter 
variations increases the forecasting quality of numerical simulation considerably here. Furthermore, 
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analyzing impacts of these variations, especially with the new classification methods, gives valuable 
insight into local behavior of the part considered. Additionally the ability of interpolation of new designs 
turns out to be a fruitful tool in the production process. 

  
Figure 10: Interpolated functional damage for parameter variation d2-2% (right) and relative 

interpolation error compared with crash simulation result. 

 

6 Discussion and Outlook 

Newly developed components of the PRO-CHAIN strategy for statistical analysis of sensitivity, stability 
and robustness aspects have been presented. The obtained results for the ZStE340 micro-alloyed 
metal blank of a B-pillar demonstrate the efficiency and possibilities of PRO-CHAIN. Important 
influences of parameter variations were found and their local behavior was characterized. The transfer 
of local thicknesses, effective plastic strain and damages from the forming to the crash step highly 
ameliorates the forecasting quality. With the new interpolation method it is easy to check the impact of 
a certain change in the parameter set. The PRO-CHAIN strategy provides efficient tools for analyzing 
whole process chains. 
 
In future research we will focus on the one hand on enhancements of the interpolation and 
visualization methods. For interpolation of new designs, approaches for decomposing the design 
space into several domains will be investigated in order to be able to choose different resolutions for 
differently important domains. Interpolation methods can work with such a decomposition if a(n at 
least) continuous transition is realized by means of decay functions, for instance. Also some work will 
be done to further accelerate the visualization methods in DesParO. The integration of other formats 
will be a topic, if desired by industry. 
On the other hand, we will further investigate robustness measures and appropriate optimization 
criteria. A combination of methods described in [7] and [10] for statistical analysis shall be developed. 
Additionally, we will apply PRO-CHAIN to more examples from the automotive as well as 
semiconductor industry. 
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