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Abstract 
 
In robustness campaigns and optimization processes metamodels are created out of a set of crash-simulations. With the help of such 
analyses the models used for the simulations can be improved. For example, instabilities can be found and explained or the needed 
material can be minimized under certain safety restrictions. 
 
An important question in this context is: How good can these metamodels represent the reality? To answer this question, one can 
compare the crash-simulations to the real crash-tests, which were recorded by camera systems after the crash. To be able to compare 
the test-data with the LS-DYNA crash-simulations, we first need to convert the test-data by matching the geometries and transferring 
the part information from the simulation to the crash-test. Afterwards one can calculate the combination of the simulations, which 
approximates geometry and deformation behavior of the test-data as close as possible. The distance and difference in behavior 
between this calculated Best Fit and the actual crash-test can be used to measure the quality of the simulation model. Once the 
evaluation of the model is finished, the test-data can also be added to a robustness campaign as an additional simulation and used for 
further analysis. 
This allows us to answer questions such as: How does the test fit into the simulation subspace? Which simulation runs are similar to 
the test for a certain crash event? Which of the dominating crash events found in the simulation can also be found in the test? 
 
Thus, the described matching procedure combined with exemplary further analysis methods on the one hand allow for a quick and 
automated matching between test and simulation and on the other hand a more detailed validation of the simulation model in 
comparison to the actual test. Due to the conversion of the test-data, the same post-processors can be used for both the simulations 
and the test-data, resulting in a smoother workflow. 
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1 Background and Objectives 

 
Since the past few years the overall awareness of variability and scatter for CAE predictions is steadily 
increasing. Giving the fact that variability is inherent in nature it is also a major task to master it during product- 
and in this case especially vehicle-development. As a matter of fact in car industry for many load cases there is 
only provision for a single performance confirmation test to verify the CAE model. As such a test is influenced 
by a series of potential variability sources like e.g. production tolerances and crash test parameter settings, the 
chance to run into unpredictable crash results rises. In case of unforeseen results this usually leads to expensive 
and inefficient design changes, at a late vehicle development phase. To counteract the above mentioned the 
CAE model should already have a robust design which is not sensitive to small variations and still delivers 
predictable results. Thus before applying design optimizations, the overall robustness of the model needs to be 
ensured. Taking a deeper look into the complex event of a car crash many reasons can be discovered why small 
variations actually lead to a big spread among the results. Just to mention a view, consider parts kinking in one 
direction or the other or parts passing each other instead of hooking up. As a consequence one approach to 
generate a robust design is to find these events (often referenced to as bifurcations) and derive design 
suggestions that can handle the variations and still deliver a deterministic crash behavior. One way to achieve 
this is mainly based on Principle Component Analysis methods and standard statistics. Our main objective is to 
add the information contained in crash test scans to this robustness analysis. Previous results can be found in 
[1]. 
 

2 Simulations and Test data 
 
In the following we will present an example for a set of simulations and one for the test data. The simulation set 
consists of 30 runs. As a model we use the Chevrolet Silverado, which has been developed by The National 
Crash Analysis Center (NCAC) of The George Washington University under a contract with the FHWA and 
NHTSA of the US DOT. Each simulation has 152 time steps and 679 Parts with a total of 929,131 Finite-
Elements. 

 
 

Fig.1: Snapshot of a simulation run of the Chevrolet Silverado before the crash. 

 
In contrast to the simulation runs the scan of the actual crash test, which we will also call test data, has no part 
information and only one time step. The time step may be after the last time step of the simulation runs since the 
car is scanned after the crash event. Even so the scan captures only a section of left part of the driver’s cabin it 
consists of 415456 Finite-Elements. Hence, the grid of the scan may be much finer than the grid of the 
simulation runs.  
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Fig.2: Crash test scan in STL format without any part information. View from the outside. 

 
 
 

3 Conversion 
 
To realise the inclusion of the test data into a robustness analysis we first have to convert the test data.  
 

3.1  Position and Part information 
 
The first step of the conversion is the matching of the nodes of the test data and the simulation runs. Therefore 
we translate and rotate the geometry of the test data such that it matches the geometry of the simulations as 
much as possible. As soon as the nodes of the test data can be identified with nodes from the simulation runs, 
the part information of the simulation runs can be transferred to the test data. 
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Fig.3: Crash test scan with part information. View from the inside. 

 
 

3.2  Best Fit 
 
Based on the test data with the already transferred part information, we calculate an artificial simulation run 
which matches the test data on a selection of parts as good as possible. Therefore let n  be the number of 
simulations and let iX  contain the coordinates of the i-th simulation. Then the coefficients iβ  arise of the 
optimal matching process. We define 
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and call TestX  the Best Fit of the simulation set regarding the test data. By calculating the distance between the 
nodes of the test data and their counterpart in the Best Fit, we can measure how well the test data can be 
described by the simulation set. In case of overall low distances we would say that the simulation set is able to 
approximate the scan of the crash test. Then one can assume that the simulation model is able to represent the 
effects which occur in a real crash.  
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Fig.4: Visualisation of the distance between the test data and the Best Fit with low distances. 

 
In case of overall high distances it is the other way around. The set of simulation seems not to be able to 
describe the effect occurring in the test data. 
 
 
 

4 Robustness Analysis 
 
Before we integrate the test data in the robustness analysis we shortly revise the basics of the Principle 
Component Analysis. For more information see [2]. 
 

4.1  Principle Component Analysis 
 
Let iX contain the coordinates of the i-th simulation run and let n be the number of simulations again. Then we 
define the average of all simulations as 
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Futhermore we define the difference of each simulation and the average of all simulations and gather these 
values in a matrix 

( ).ˆ:ˆ,:ˆ  iii XXXXX =−=  
Let C be the covariance matrix defined by 

.ˆ,ˆ: jiij XXC =  

The covariance matrix is positive definite and therefore there is a orthogonal matrix 𝑉𝑉and a diagonal matrix 
𝛬𝛬such that 

𝐶𝐶 = 𝑉𝑉𝑇𝑇𝛬𝛬2𝑉𝑉. 
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We call the rows of the matrix 𝑉𝑉the modes of the set of simulations. By multiplying the modes with the 
centered simulations𝑀𝑀: = 𝑉𝑉𝑇𝑇𝑋𝑋� each simulation can be expressed in terms of the modes: 

𝑀𝑀 = 𝑉𝑉𝑇𝑇𝑋𝑋� ⇒ 𝑋𝑋�𝑖𝑖 = 𝑣𝑣𝑖𝑖𝑀𝑀∀𝑖𝑖 ⇒ 𝑋𝑋𝑖𝑖 = 𝑋𝑋� + �𝑣𝑣𝑗𝑗𝑖𝑖𝑀𝑀𝑗𝑗

𝑛𝑛

𝑗𝑗=1

∀𝑖𝑖 

With 𝑣𝑣𝑖𝑖being the i-th row of 𝑉𝑉. 
 
 

4.2 Mode composition of the Test data 
 
With the help of the expression of the simulation runs in terms of modes we are also able to formulate the Best 
Fit run in terms of modes: 

𝑋𝑋Test = ∑ 𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1 = ∑ 𝛽𝛽𝑖𝑖(𝑋𝑋� + ∑ 𝑣𝑣𝑗𝑗𝑖𝑖𝑀𝑀𝑗𝑗

𝑛𝑛
𝑗𝑗=1 )𝑛𝑛

𝑖𝑖=1 = 𝑋𝑋� + ∑ ∑ 𝛽𝛽𝑖𝑖𝑣𝑣𝑗𝑗𝑖𝑖𝑀𝑀𝑗𝑗
𝑛𝑛
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1 = 𝑋𝑋� + ∑ (∑ 𝛽𝛽𝑖𝑖𝑣𝑣𝑗𝑗𝑖𝑖𝑛𝑛

𝑖𝑖=1 )𝑀𝑀𝑗𝑗
𝑛𝑛
𝑗𝑗=1 . 

We denote the contribution of the j-th mode to the Best Fit by𝛾𝛾𝑗𝑗: 

𝛾𝛾𝑗𝑗: = �𝛽𝛽𝑖𝑖𝑣𝑣𝑗𝑗𝑖𝑖
𝑛𝑛

𝑖𝑖=1

 

Hence, we obtain: 
𝑋𝑋Test = 𝑋𝑋� + ∑ 𝛾𝛾𝑗𝑗𝑀𝑀𝑗𝑗𝑛𝑛

𝑗𝑗=1 . 
 
With the help of this representation of the test data we are able to compare the behavior of the test data with the 
behavior of the simulations in terms of modes. 
 
 

4.2.1  Visualisation in the Scatterplot 
 
We can visualise the modes in a scatterplot. In the following figure the two dominating modes are plotted with 
the modes of the test data being highlighted in red. The modes of the test data are part of a cluster of the modes 
of the simulations. Hence one can deduce that the behaviour is similar to that of the simulations in this 
particular cluster.  
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Fig.5: Representation of the test data as modes in the scatterplot. The qualitative and quantitative behaviour of the 

simulations and the test data match. 

 
If that would not be the case, it is probable that the test data does not behave like a simulation from the set. 
 
 

4.2.2  Relation to the Importance Factors 
 
To decrease scatter in the simulations, one is interested to diminish the mode with the biggest impact on the 
simulations. But it may be that the mode that dominates the behavior of the simulations is not necessarily the 
most important one for the test data as we see in Figure 6. Hence, reducing the modes with the highest impact 
on the simulations may not be enough to reduce the scatter in the actual crash test. And therefore the modes 
dominating the behavior of the test data should also be ta 
en in account.  
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Fig.6: The mode with the highest importance factor does almost contribute nothing to the test data. 

 
 
 

5 Summary 
 
The driving question of this work is: How good can a set of simulation represent the behavior of an actual crash 
test? To answer this question, we added the test data to a robustness analysis of the crash-simulations. After 
converting the test data we were able to compare the behavior of the crash test with the simulations in terms of 
modes with the help of the Principle Component Analysis. 
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