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Abstract 
 
This paper solves two numerical issues arising from the return mapping scheme when simulating metal forming processes 
with LS-DYNA: (1) the returning mapping process fails to converge in cases where the effective plastic strain increment is 
small; (2) even when full convergence is accomplished at each time step, the global solution may diverge under small time 
step settings. For the first issue, a stable iterative scheme with global convergence is implemented to substitute the 
original secant algorithm which is only locally convergent. For the second issue, a variable tolerance is introduced to 
control the local error when necessary and hence improve the global convergence. Two examples are given to 
demonstrate the effectiveness of these methods. 

 
 

Background 
 

In simulations involving plastic deformations, return mapping is an essential step to determine the final values 
of stress from a given strain increment. It starts from using the elastic equations and the total strain increment to 
form a trial stress, which is usually outside of the yield surface and hence inadmissible. Then by correcting the 
plastic strain increment, the stresses are relaxed back to the updated yield surface and become physically 
possible [1]. Usually, an iterative algorithm is used to find the correct plastic strain increment ∆𝜀𝜀𝑝𝑝. Here we 
simplify this return mapping procedure as finding the root to the following non-linear equation: 

                           𝑓𝑓�∆𝜀𝜀𝑝𝑝� = 0                                                                              (1) 
where f is a non-linear function that measures the distance of a stress state to the yield surface. In LS-DYNA, 
the secant algorithm, which is outlined in equation (2), is applied to find the root: 

  ∆𝜀𝜀𝑘𝑘+1
𝑝𝑝 = ∆𝜀𝜀𝑘𝑘

𝑝𝑝 − 𝑓𝑓(∆𝜀𝜀𝑘𝑘
𝑝𝑝) ∙ (∆𝜀𝜀𝑘𝑘

𝑝𝑝 − ∆𝜀𝜀𝑘𝑘−1
𝑝𝑝 ) (𝑓𝑓�∆𝜀𝜀𝑘𝑘

𝑝𝑝� − 𝑓𝑓�∆𝜀𝜀𝑘𝑘−1
𝑝𝑝 �)�                              (2) 

As shown by equation (2), the secant method is a variant of the classical Newton method which uses a linear 
approximation to replace the derivative term 𝑓𝑓′(∆𝜀𝜀𝑝𝑝) . It works well when f is well-behaved and delivers a 
decent convergence rate of 1.618. However, it inherits the local convergence nature from Newton’s method, i.e., 
the initial guess has to be close enough to an isolated root for the solution to converge. But this condition is not 
guaranteed to be satisfied in numerical practice. For example, the initial guess of ∆𝜀𝜀𝑝𝑝 is commonly set to be the 
total effective strain increment ∆𝜀𝜀. But at the initial stage of plastic deformation, ∆𝜀𝜀𝑝𝑝 may be well below ∆𝜀𝜀, 
meaning the initial guess is actually far away from the true solution. In this case, the return mapping is highly 
likely to fail in convergence. Time step size is another simulation setting that the return mapping scheme is 
sensitive to and may have problems with. Sometimes even if we have accomplished full convergence at every 
time step, the solution still blows up when the time step size is too small and round-off error becomes dominant. 
As a proper time step size is determined from the element size and the sound speed of the material, we do not 
always have the option of increasing the time step size to avoid such problems. Therefore, this numerical issue 
also has to be resolved.  
In this paper above two issues are fixed with the following approaches: (1) use an iterative scheme with global 
convergence by combining the secant method with bisection method (i.e., the Dekker’s method) in the return 
mapping process; (2) introduce a variable tolerance criterion which controls the local error and improves the 
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overall numerical stability. Two examples are given to demonstrate that the implemented approaches indeed 
resolve these issues. 
 

 Iterative return mapping with global convergence 
 

Fig. 1(a) shows a situation in which the original return mapping scheme, i.e., the secant algorithm, fails to 
converge. As shown, the f function tends to stagnate at small ∆𝜀𝜀𝑝𝑝 which can be caused by limited machine 
precision. This leads to an extremely small denominator in equation (2). Consequently a substantially large step 
is taken in the iterative procedure which directs the solution away from the real root which is shown in Fig. 
1(b). In Fig. 1(b), the left axis shows the f evaluations of each iterate and the right shows the values of iterates. 
Whenever the iterate gets into flat part indicated in Fig. 1(a), the algorithm makes a big adjustment to the 
iterate, leading to a large f in the next iteration. As a result, f keeps bouncing between four different values 
without a sign of convergence. In practice, LS-DYNA sets a maximum on the number of iterations and exits the 
secant algorithm with a warning message once the limit is reached, regardless of the convergence.  

                     
One key observation from this divergence scenario is that the plastic component of the effective strain 
increment is small and hence the f function is evaluated slightly positive when ∆𝜀𝜀𝑝𝑝 = 0 and becomes negative 
as ∆𝜀𝜀𝑝𝑝gets larger. This suggests that we could actually bracket the real root between two iterates ∆𝜀𝜀𝑎𝑎

𝑝𝑝 and ∆𝜀𝜀𝑎𝑎
𝑝𝑝 

if 𝑓𝑓(∆𝜀𝜀𝑎𝑎
𝑝𝑝) ∙ 𝑓𝑓(∆𝜀𝜀𝑏𝑏

𝑝𝑝) < 0. As long as f is continuous, we can then apply the bisection method to shrink down this 
bracket gradually and reach a satisfactory solution. As for the case plotted in Fig. 1(a), it is obvious that once 
we find the bracket, the bisection method, which only has a convergence rate of 1, would perform much better 
than the secant method. 
To take advantage of both the efficiency of the secant method and the stability of the bisection method, a natural 
thought would be that we get started with the secant method and monitor the convergence on the solution. if 
�∆𝜀𝜀𝑘𝑘+1

𝑝𝑝 − ∆𝜀𝜀𝑘𝑘
𝑝𝑝� is not shrinking down in a satisfactory manner, it suggests that the current iterate is not close 

enough to the real root and we should  return back within the bracket and apply bisection for a few iterations to 
further tight down the search range of ∆𝜀𝜀𝑝𝑝 such that the secant method would start working again [2]. This 
gives us Dekker’s method and an implementation of this method in our return mapping algorithm can be 
outlined as follows: 

1. Start from  ∆𝜀𝜀0
𝑝𝑝 = 0 and ∆𝜀𝜀1

𝑝𝑝 = ∆𝜀𝜀 where ∆𝜀𝜀 is the total effective strain increment at this time step. 
2. If 𝑓𝑓(∆𝜀𝜀𝑘𝑘

𝑝𝑝) ∙ 𝑓𝑓(∆𝜀𝜀𝑘𝑘−1
𝑝𝑝 ) < 0, set bisection flag and set ∆𝜀𝜀𝑎𝑎

𝑝𝑝 = ∆𝜀𝜀𝑘𝑘−1
𝑝𝑝 ,  ∆𝜀𝜀𝑏𝑏

𝑝𝑝 = ∆𝜀𝜀𝑘𝑘
𝑝𝑝 . 

Figure 1 (a) f as a function of Δεp in the scenario of divergence.  (b) The 
divergence of the return mapping scheme: The red curve shows each iterate and 
the blue shows the corresponding f evaluations. The secant procedure would direct 
the solution away from the true root whenever the iterate gets into the flat part of 
the curve indicated in (a). Therefore the iterate keeps bouncing without a sign of 
convergence. 
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3. If bisection flag is clear, continue one more step of secant’s method and go back to (2). Otherwise:  
a) Swap ∆𝜀𝜀𝑎𝑎

𝑝𝑝 and ∆𝜀𝜀𝑏𝑏
𝑝𝑝,  if �𝑓𝑓(∆𝜀𝜀𝑎𝑎

𝑝𝑝)� < �𝑓𝑓(∆𝜀𝜀𝑏𝑏
𝑝𝑝)�.  

b) Calculate the bisection guess ∆𝜀𝜀𝑚𝑚
𝑝𝑝 = (∆𝜀𝜀𝑎𝑎

𝑝𝑝 + ∆𝜀𝜀𝑏𝑏
𝑝𝑝) 2⁄ .  

c) Calculate the secant guess 
 ∆𝜀𝜀𝑠𝑠

𝑝𝑝 = ∆𝜀𝜀𝑘𝑘
𝑝𝑝 − 𝑓𝑓(∆𝜀𝜀𝑘𝑘

𝑝𝑝) ∙ (∆𝜀𝜀𝑘𝑘
𝑝𝑝 − ∆𝜀𝜀𝑘𝑘−1

𝑝𝑝 ) 𝑓𝑓�∆𝜀𝜀𝑘𝑘
𝑝𝑝� − 𝑓𝑓(∆𝜀𝜀𝑘𝑘−1

𝑝𝑝 )�   
d) If ∆𝜀𝜀𝑠𝑠

𝑝𝑝 falls between ∆𝜀𝜀𝑚𝑚
𝑝𝑝  and ∆𝜀𝜀𝑏𝑏

𝑝𝑝, ∆𝜀𝜀𝑘𝑘+1
𝑝𝑝 = ∆𝜀𝜀𝑠𝑠

𝑝𝑝, otherwise, ∆𝜀𝜀𝑘𝑘+1
𝑝𝑝 = ∆𝜀𝜀𝑚𝑚

𝑝𝑝 .  
e) If  𝑓𝑓(∆𝜀𝜀𝑘𝑘

𝑝𝑝) ∙ 𝑓𝑓(∆𝜀𝜀𝑘𝑘+1
𝑝𝑝 ) < 0, set new contra-point ∆𝜀𝜀𝑎𝑎

𝑝𝑝 = ∆𝜀𝜀𝑘𝑘
𝑝𝑝. 

f) 𝑘𝑘 = 𝑘𝑘 + 1 and go back to 3(a). 
Note that with this method �∆𝜀𝜀𝑘𝑘+1

𝑝𝑝 − ∆𝜀𝜀𝑘𝑘
𝑝𝑝�  is guaranteed to shrink at least by a factor of 0.5 at each iteration. To 

get started, we need to run the secant method first until we can securely bracket our solution. However by our 
observation of the failure scenario, the Dekker’s method would initiate from the very first step, namely, ∆𝜀𝜀0

𝑝𝑝 =
0 and ∆𝜀𝜀1

𝑝𝑝 = ∆𝜀𝜀 due to the nature of the physical process. 
Now we conduct the hot forming simulation on the same model with the Dekker’s method being applied in the 
return mapping process. At exactly the same element where the secant method fails to converge, we are able to 
achieve convergence within 6 iterations which is shown in Fig. 2(a). Note that in Fig. 2(a) �𝑓𝑓(∆𝜀𝜀𝑘𝑘

𝑝𝑝)� and ∆𝜀𝜀𝑘𝑘
𝑝𝑝  

are plotted together with �𝑓𝑓(∆𝜀𝜀𝑎𝑎
𝑝𝑝)� and ∆𝜀𝜀𝑎𝑎

𝑝𝑝  so that we can see how the bisection bracket is shrinking down as 
the iteration proceeds. It is clear that at iterations 1-5, bisection is used to ensure stability. The current iterate 
∆𝜀𝜀𝑘𝑘

𝑝𝑝 is actually fixed at 0 yet ∆𝜀𝜀𝑎𝑎
𝑝𝑝 keeps going down to narrow down the search range. At iteration 6, we finally 

lock down our search to a range which is close enough to the real root. And with just one round of secant 
method, we achieved convergence with a �𝑓𝑓(∆𝜀𝜀𝑘𝑘

𝑝𝑝)� smaller than the tolerance.  
Dekker’s method works well for the problem presented here but may converge much more slowly than the 
bisection method under certain circumstances. Brent proposed a more bullet-proof method later which has two 
major improvements from Dekker’s method [3]: (1) it uses inverse quadratic interpolation (which is supposed to 
work better with smooth f functions) other than linear interpolation (which is adopted by the secant method); (2) 
it introduces more tests before the quadratic interpolated value can be accepted as the next iterate. Subjecting 
this algorithm to the same problem shown in Fig. 1, we are able to reach convergence within 4 iterations, as 
demonstrated in Fig. 2(b). 
  

                          

Figure 2 (a) Dekker’s method: convergence is achieved within 6 iterations with 5 steps of 
bisection and 1 step of secant. (b) Brent’s method: convergence is achieved within 4 
iterations with a combination of bisection and inverse quadratic interpolation.  
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0.02m/s 

(a) 

(b) (c) 

(d) 

Figure 3 Example uniaxial tension problem (a) Tensile test on a dog bone sample (b) Before fix: 
time history of axial force under three different time step settings: dt = 7e-6 s, 7e-7 s, 7e-8 s (c) 
Before fix: time history of effective plastic strain under three different time step settings: dt = 7e-6 
s, 7e-7 s, 7e-8 s (d) After fix: time history of axial force under three different time step settings: dt 
= 7e-6 s, 7e-7 s, 7e-8 s (e) After fix: time history of effective plastic strain under three different  
time step settings: dt = 7e-6 s, 7e-7 s, 7e-8 s 

(e) 

Variable tolerance to improve time step sensitivity 
 

There are cases in which the global solution fails in convergence even when the convergence criterion is met at 
each time step. Fig. 3 gives a simple example to illustrate this. Consider a dog bone sample under a tensile test, 
as shown in Fig. 3(a). The sample is subject to a uniaxial tension with the left end fixed and the right end being 
stretched at a constant rate of 0.02 m/s. A transient mechanical simulation is conducted to solve this simple 
elastic-plastic deformation problem. For such an analysis, one of the most important settings is the time step 
size dt. As a rule of thumb, we need the time step size to be small enough such that the update of a nodal 
solution is completed before the node is hit by the wave from neighboring nodes. Therefore, a proper time step 
size is dependent on the element size in the model, as well as the sound speed of the model material. However, 
in this case we are actually stuck in a dilemma where the solution becomes unstable when we decrease the time 
step size for more accuracy. Fig. 3(b) shows the time history of the axial force calculated by LS-DYNA under 
three different time step sizes: dt = 7e-6 s, dt = 7e-7 s and dt = 7e-8 s. Fig. 3(c) shows the time history of 
effective plastic strain (εp). Because a couple of obvious discontinuities are observed from the curve of dt = 7e-6 
s in Fig. 3(b), a natural thought is to improve the solution by further reducing dt. However, when we decrease dt 
to 7e-7 s and further down to 7e-8 s, both axial force and effective plastic strain solutions blow up, as shown by 
the red and green curves in Figs. 3(b) and (c). 
              



15th International LS-DYNA® Users Conference Metal Forming 

June 10-12, 2018  5 

This phenomenon is not rare in numerical practice. In general, the numerical solution is expected to converge to 
the real one when the time step size decreases. But excessive reduction in time step size will result in the 
dominance of round-off error which can accumulate and mess up the entire solution. In the specific case of Figs. 
3(b) and (c), the problem occurs at the iterative return mapping process, i.e., the process of solving equation (1). 
The non-linear nature of f prohibits us from obtaining an analytical solution.  Instead, we use Dekker’s method 
to find an approximate solution. To determine if an approximate solution is good enough, a fixed relative 
tolerance is applied as the convergence criterion, i.e., the searching process terminates if �𝑓𝑓(∆𝜀𝜀𝑝𝑝)� ≤ 𝑡𝑡𝑡𝑡𝑡𝑡 ∙
𝑌𝑌(∆𝜀𝜀𝑝𝑝). Here tol is a fixed number (usually tol is set to be 0.001) and Y is a yield surface function dependent on 
Δεp. Because equation (1) is solved numerically, we actually introduces a local error to the mechanical strain at 
every time step. The precision of the solved Δεp is up to the specified tolerance. Extremely small time steps 
could lead to small strain increment which is likely to generate big round-off errors that is ignored by the fixed 
tolerance criteria. Accordingly, the accumulated global error can become quite significant and eventually mess 
up the entire solution, as shown in Figs. 3(b) and (c).  
Here we developed a simple fix to this problem by introducing a flexible tolerance which tightens up the 
accuracy requirement when the local error needs to be controlled for the purpose of convergence. The key is 
how to determine whether the tolerance needs to be adjusted and how to adjust it. One option is to scale the 
tolerance with the time step size. However, as mentioned above, an applicable time step size varies with models 
significantly. Thus it is difficult to find one single reference time step size that works for all models. On the 
other hand Δεp might be a good choice because it reduces with time step size for the same model and unlike the 
time step size, strain increment itself is a relative measure. The only problem is that Δεp is unknown (we are 
actually trying to solve Δεp with the return mapping algorithm). However, we do have a very good candidate to 
serve as Δεp in an iterative scheme, which is the guess of Δεp.  
Figs. 3(d) and (e) show the results when the flexible tolerance is applied in return mapping. As shown in Fig. 
3(d), time history of the axial force becomes smooth when dt is reduced to 7e-7 s and below. In the meantime, 
the result converges successfully as dt decreases, in contrast to the diverging trend in Fig. 3(b). Similarly, the 
effective plastic strain curves in Fig. 3(e) also shows a nice trend of convergence as dt reduces toward 7e-8 s. 
Thus the conflict between time step size and numerical stability is resolved. 
 

Conclusion 
 

 In this paper, we made two improvements to the iterative return mapping scheme used in metal forming 
simulations to address the convergence issues. In the process of finding Δεp, we replaced the original secant 
method by combining the newton-type scheme with the bisection method. This method effectively fixes the 
convergence failure encountered by elements with very small Δεp. Furthermore, we also introduced a flexible 
tolerance criterion which scales with the initial guess of Δεp such that when the time step size needs to be 
ultrafine to meet the courant criterion, we can still effectively control the local error and achieve a smooth and 
accurate global solution. 
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