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Abstract 
 
This paper presents an enhancement of LS-DYNA XFEM shell method [30] for dynamic ductile failure in shell structures. The XFEM 
shell formulation adopts the finite element continuous-discontinuous approach. The continuum damage model based on continuous 
displacements is used in the continuous stage to describe the diffuse micro-cracking in ductile failure before a macro-crack is formed. 
In the context of first-order shear deformable shell finite element method, a nonlocal modelling procedure based on a projection of 
mid-plane reference surface is introduced to regularize the element-wise strain fields induced by the continuum damage model. In the 
discontinuous stage, an incorporation of velocity discontinuities in shell finite elements is pursued by XFEM method when the damage 
variable exceeds a critical value and the transition from a continuous to a discontinuous model is permitted. A phantom-node 
approach [17] is employed in XFEM method to simplify the numerical treatment of velocity discontinuities in the shell finite element 
formulation. Several numerical benchmarks are examined using the explicit dynamics analysis and the results are compared with the 
experimental data to demonstrate the effectiveness and accuracy of the numerical method. 

 
 

1. Introduction 
 
Failure and fracture analyses in metal materials are increasingly important in many industries. For the 
automotive industry, lightweight materials such as the high-strength steel have a direct impact on driving 
dynamics, fuel consumption and agility. While the structure made of high-strength steel offers superior stiffness 
with reduced weight, material failure analysis in high-strength steel structure becomes critical for 
crashworthiness simulation in modern lightweight vehicle design. In contrast to brittle fracture in concretes and 
rocks, the ductile failure in metals undergoes a certain amount of plastic deformation before a macro-crack is 
evident. Microscopically, this ductile damage phenomenon is associated with voids nucleation, growth and 
coalescence under high and moderate stress triaxiality [1]. Macroscopically, the ductile damage is represented 
by the progressive degradation of material as a consequence of the growth of microstructural defects and can be 
modeled phenomenologically using the continuum damage mechanics [2,3]. When the coalescence of some 
microstructural defects creates the macro-crack, the discrete fracture becomes dominant as the ultimate result of 
the material degradation process [3] in ductile fracture. 
Standard numerical simulations using the continuum damage models are known to be susceptible to the 
pathological localization of deformation. To regularize the non-unique solution in damage-induced strain 
localization problems, several integral-type and gradient-type of nonlocal damage models [4-6] and phase field 
model [7] based on regularized variational formulation were developed.  
When the coalescence of some microstructural defects creates the macro-crack, the discrete fracture becomes 
dominant and rupture occurs in ductile materials. Unfortunately, the numerical methods based on a pure 
nonlocal damage model are inadequate to describe such kinematic discontinuity of the displacement field in a 
continuous setting [8]. To release the excessive straining in the damage zone and achieve a better representation 
of the entire failure process, many combined continuous-discontinuous approaches [8,9,10-13] have been 
developed. While the nonlocal damage model is used to describe the material degradation, the discontinuous 
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enrichment [14-16] typically used in fracture mechanics are usually considered to model the discrete crack. 
Among those discontinuous enrichment methods, the phantom-node approach [17] in extended finite element 
method (XFEM) [18, 19] is attractive to model the ductile fracture in plate and shell structures. The phantom-
node approach describes a crack with two standard overlapping elements, therefore, it can be directly applied to 
any existing finite element code, for example, the 4-noded element using a fully integrated shear deformable 
shell formulation [21, 22].  
In this study, we present a finite element continuous-discontinuous approach, which adopts nonlocal strain 
regularization in continuous damage models and phantom-node XFEM for discrete cracks, for the dynamic 
analysis of ductile failure in shell structures made of metals or alloys. The rest of the paper is organized as 
follows: Section 2 briefly summaries the XFEM shell formulations in LS-DYNA and provides the 
computational flow and keyword format to use XFEM. Section 3 describes a nonlocal approach for the XFEM 
method in shells for ductile fracture simulation. Three numerical examples are given in Section 4, and finally 
the conclusions are made in Section 5. 
 

2. LS-DYNA XFEM Shell Formulations 
 
The XFEM phantom-node approach has been applied to two finite element shell formulations in LS-DYNA, the 
one-point integrated Belytschko-Lin-Tsay shell with hourglass control [23] and the four-node fully integrated 
shear deformable shell formulation [21, 22] with assumed strain interpolants [24, 25] for alleviating the shear 
locking and for enhancing the in-plane bending behavior. Through-the-thickness, element-wise discontinuous 
velocity and angular velocity fields are introduced to the standard shell element formulation using the XFEM 
phantom-node approach to model the internal discontinuity in a shell element when fracture occurs in this 
element.   
Unlike the brittle fracture where material failure is controlled by stress-based criterion, such as the maximum 
tensile strength in Mode-I fracture, the ductile failure is determined by strain-based criterion. With a standard 
plastic constitutive model, the transition from continuous to discontinuous state can be triggered when a critical 
plastic strain threshold is reached. In this case, a modified cohesive zone model is applied to the newly activated 
crack surface to account for the energy released from the crack surface. With the continuum damage model, the 
transition from damage to crack is triggered when the material is fully degraded. In this scenario, a traction-free 
crack [15,20] is introduced to the numerical model as the damage variable is close to one. These local material 
models cannot be directly used for numerical simulations of ductile fracture, nonlocal processing procedure 
needs to be applied to remove the mesh sensitivity problem, which will be presented in next section. 
Detailed theories on these element formulations and phantom-node XFEM can be found in relevant literatures 
and are omitted in this paper. 

2.1 Computational flow chart  
The computational procedure of the phantom-node XFEM is given in the following.   
 

1. Check crack initiation/propagation. 
1.1 Compute non-local effective plastic strain in candidate elements. 
1.2 Compute damage variable if continuous damage model is used. 
1.3 If damage variable exceeds critical value, or effective plastic strain reaches criterion, active XFEM. 

1.3.1 For crack initiation, crack direction determined by first principal strain; for crack 
propagation, crack direction determined by damage/plastic strain center. Calculate crack line 
in the element in initial configuration. 

1.3.2 Add phantom nodes; replace the original shell element with two overlapping phantom 
elements which are comprised of real nodes and phantom nodes but have same element 
formulation as the replaced element. 

1.3.3 Calculate lumped mass for added phantom nodes and update lumped mass for the real nodes. 
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1.3.4 Constrain the phantom nodes on the crack tip edge. 
2. Update kinetical variables on real nodes and phantom nodes if any. 
3. Advance one time-step. 

3.1 Set nodal forces to zero. 
3.2 Apply external load, including contact force. 

4. Loop through regular finite elements and phantom elements. 
4.1 Calculate strain rate at Gauss points. Update strain components. 
4.2 Update stress components using continuous damage constitutive law. 
4.3 Calculate nodal forces at real nodes for all elements, and phantom nodes if it’s a phantom element. 
4.4 If in a regular element the damage variable/effective plastic strain at any Gauss point exceeds the 

critical value, mark this element as an XFEM candidate. 
5. Go to 1. 

2.2 Keyword for XFEM shells 
XFEM shells can be activated using keyword *SECTION_SHELL. The keyword format is as follows 

*SECTION_SHELL_{XFEM}  

 
ELFORM = 52 for 2D plain strain 
                 = 54 for shell 
MCID: Material ID for cohesive law 
BASELM =   2 for base shell element type 2  (default for shell)       = 13 for 2D plain strain (default for 2D) 
                 = 16 for base shell element type 16 
DOMINT:  Option for domain integration for XFEM 
                = 0 phantom element integration (default) 
                = 1 subdomain integration (not available in shell XFEM) 
FAILCR: Failure criterion 
                =  1 maximum tensile strength (value given in cohesive law) 
                = -1 critical effective plastic strain 
                = -2 crack length dependent EPS 
                = -3 continuum damage model 
PROPCR: Option for crack propagation direction 
                = 0 first principal total strain direction 
                = 2 center of effective plastic strain 
                = 3 damage center 
FS:  Failure strain/Failure critical value  
LS:  Length scale for strain regularization, >0 actives strain regularization, available for FAILCR=-1 
NC: Number of cracks allowed. NC<0 (or NC=-99) activates element erosion for failed XFEM elements.  
When FAILCR=-2, a crack-length dependent critical effective plastic strain is defined as 

0 0 1min(1.0,  / ) ( )crit cl lε ε ε ε= − ∗ −          (1) 
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where 0ε  is initial failure plastic strain FS, 1ε  is final failure plastic strain FS1, cl  is crack length LC  at final 
plastic strain and l is crack length. 
  
 

3. Nonlocal Processing for XFEM Shell 
 
With continuum damage models or standard plastic constitutive models, the finite element simulations using 
local failure criterion are susceptable to the mesh sensitivity problem. To avoid the pathological localization of 
deformation and damage growth in XFEM shell computation, the integral-type of nonlocal modeling [4] is 
considered in this paper.  

3.1 Nonlocal strain averaging in shells 
In the integral-type of nonlocal model, the growth of variable in a material point X is no longer governed by the 
local property at the point, but by an averaged or nonlocal property. In a classical plasticity-induced damage 
model, the damage variable d generally is a function of the effective plastic strain ( )epε X . Therefore, a 

continuous form of the nonlocal effective plastic strain ( )epε X  can be defined by 

( )
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where Y denotes the position of the infinitesimal volume Ωd , and ( );nonRψ Y X  is a weight function that 

determines the influence of the local effective plastic strain ( )epε Y  in this infinitesimal volume on ( )epε X . In 

this study, the cubic spline function is used as the weight function. The radius size Rnon of ( );nonRψ Y X  is a 
material length parameter which can be related to the scale of the microstructure [26] in a damage-induced 
strain localization problem. 0

XΩ  denotes a nonlocal processing zone of the evaluated material point X that is 
defined on the initial configuration 0Ω . The general application of Eq. (2) to the shell structures requires some 
modifications which are described as follows. 
Considering a typical curved shell structure which is discretized by a set of quadrilateral elements as shown in 
Figure 1, we define an image of a material point X on the shell midsurface to be X on 0Ω . The two-dimensional 
domain 0Ω is considered to contain a collection of shell elements projected from the three-dimensional space 
onto a two-dimensional domain based on the element associated with the evaluated material point X . 

 

Figure 1. A projection of the shell midsurface in three-dimensional space to two-dimensional domain 0Ω within the radius 
size Rnon of the nonlocal processing zone 



15th International LS-DYNA® Users Conference Constitutive Modeling 

June 10-12, 2018  5 

In other words, we first choose the element P in 0Ω to be the coordinate plane to project the shell midsurface 
onto as well as to define the unit vectors for projection. Next, we determine the region of the projection by 
gathering the neighboring elements of element P that are within the nonlocal processing zone. Let P

qmX  denote a 
Guass point of element P where q=1~4 are four in-plane integration points and m=1~(2*n+1) indicate the 
thickness integration points. We also let P

qnX  be a Guass point of element P on the shell midsurface. The 
projection is defined by 

( ) ( )( )0 0 0Ω Ω    suppnon non nonR R RJ J J P J
P qn P qn qn qn qnψΠ → =Π ∀ ∈ ⊂ Ω: , X X X X , X       (3) 

Apparently, we have J
nq

J
nq

J
qn

J
q

J
q )12()2(21 +===== XXXXX  due to the projection made on the shell 

midsurface. 
Since the quadrilateral shell element is completely cut by a crack, the crack front position can always be 
determined and defined on 0Ω . Giving a line of discontinuity and its crack front as shown in Figure 2, the 
position of the Gauss point P

qmX  in next fractured element and the corresponding nonlocal effective plastic 

strains can also be computed. Using Eq. (2), the nonlocal effective plastic strain ( )ep p
qmε X  at the Gauss point 

P
qmX in a non-cracked shell element P is computed by 
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where NP is the total number of Gauss points within the radius size for nonlocal strain averaging. In this study, 
the nonRψ  is considered a projection of nonRψ onto 0Ω where the radius size nonR  of nonRψ is determined from a 
numerical calibration based on a simple tension test which will be described in the second numerical example in 
Section 4.  
 

 
Figure 2. An illustration of nonlocal strain smoothing algorithm in this study 

3.2 Crack propagation direction in shells 
As soon as the damage variable at any one of the Gauss points in the element ahead of the current crack front 
reaches the critical value, the crack starts to propagate. Subsequently, the extension of the discontinuity will 
need to be made which requires the determination of crack propagation direction. Several approaches have been 
proposed for the determination of crack propagation direction in ductile fracture analysis [27, 28]. In this study 
we follow the approach of [27] and assume that no crack branching occurs in ductile fracture process. A 
damage center CX  in front of the crack is determined in the reference configuration by  
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where the Gk is a node set that collects all the candidates of Gauss points including those through the thickness 
within the first half of the domain of influence in the nonlocal processing zone as shown in Fig 3. In other 
words, the damage value is weighted with the exponential function in Eq. (5) for the determination of the 
damage center CX .  

 
 

Figure 3. The determination of crack propagation direction in this study 

While the direction of the discontinuity line is determined in the crack propagation step, the location of the 
crack front due to the assumptions of the through-the-thickness and element-wise discontinuous velocity and 
angular velocity fields remains to be predicted. In this paper, the location of the new crack front is determined 
by the intersection between the extension of the discontinuity line and the edge of the finite element ahead of 
the current crack front as shown in Figure 3. Once the new crack front is determined, the through-the-thickness 
and element-wise discontinuous velocity/angular velocity fields are added in the element formulation using the 
XFEM phantom-node approach to respect the stress-free condition when the material is fully degraded. This 
implies that the damage center CX in the reference configuration 0Ω and its crack propagation direction are also 
determined. The main reason of obtaining the crack propagation direction in the reference configuration is the 
same as that for most discontinuous approaches in fracture analysis [3,27,28]. That is to avoid the reformulation 
of the weak form problem due to the moving discontinuities. 
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4. Numerical examples 

 
In this section, three benchmark examples are analyzed to study the performance of present method in the shell 
fracture analysis. It is assumed that ductile failure occurs mainly due to plastic straining so critical effective 
plastic strain criterion is used for crack initiation and propagation. Unless otherwise specified, dimensionless 
unit system is adopted in this paper.             

4.1 Pulling test of 2D plate with a hole 
Single crack propagation is studied in a 2D plate with a hole model using quasi-static nonlinear analysis. The 
model is shown in Figure 4. The strain-hardening elastic-plastic material properties are: Young’s modulus 
E=100, Poisson’s ratio v=0.3, and an isotropic hardening rule ( ) ( )βασσ p

y
p

y ee += 10  with coefficients 

75.00 =yσ , 5.12=α  and 05.0=β . pe  denotes the effective plastic strain and ( )p
y eσ  is the flow stress which 

is a scalar and increases monotonically with the effective plastic strain. Figure 5 shows three meshes with 773, 
3062 and 6567 elements (mixed quadrilateral and triangular elements).  
A damage law is taken [6, 28, 29] in the following form.   

( )d g κ=                                                                                                           (6) 

                                                                                                        (7) 

where  and  denotes the initial and critical values of effective plastic strain , respectively. The damage 
parameters are =0.09 and cκ =0.1 while the radius of nonlocal processing zone nonR is fixed at 1.5 for all three 
discretizations. 

 
Figure 4. 2D plate with hole 
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(a) 773 elements                      (b) 3062 elements                     (c) 6567 elements   

Figure 5. Three models with mesh refinement 

  
(a) 773 elements                     (b) 3062 elements 

 
(c) 6567 elements 

Figure 6. Final crack path results of three discretizations in the undeformed configuration 

Figure 6 shows the final crack path results, which are very consistent across different mesh refinements. Figures 
7 and 8 show the effective plastic strain and maximum principal stress results at three different crack 
propagation stages using the finest model. 

 
Figure 7. Effective plastic strain plots at three different crack propagation stages using the finest model (6567 elements) 
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Figure 8. Maximum principal stress plots at three different crack propagation stages using the finest model (6567 

elements) 

 
Figure 9 shows the convergence study of boundary reaction force in y direction using three different 
refinements. Without nonlocal processing, the force response indicates quite different crack initiation time and 
crack speed for different meshes, while the results become consistent when using nonlocal processing. 
 

 
(a) without nonlocal processing             (b) with nonlocal processing 

Figure 9. Convergence study of boundary reaction force results 

4.2 Double V-notched specimen under stretching  
In the second benchmark, a specimen with double V-notches is under uniaxial tensile stretching. This 
benchmark is used not only to demonstrate the mesh sensitivity problem of the local constitutive model, but also 
to illustrate a numerical mean to obtain the regularization length scale required in the non-local model. 
The geometry of the specimen is shown in Figure 10 and the unit of length is millimeter. The lower edge of the 
specimen is fixed and the upper edge is clamped and pulled upwards with a constant velocity Vy=10mm/s. The 
material of the specimen is hot stamped high strength steel with density 7.8x10-9 ton/mm3, Young’s modulus 
1.8×105 N/mm2, Poison’s ratio 0.3, initial yield stress 1110.8 N/mm2 and a non-linear yield stress-plastic strain 
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curve given in Figure 11. The critical effective plastic strain is 0.05. Due to symmetry, only half of the 
specimen is modeled in this study.  

 
Figure 10. Double V-notched specimen under stretching 

 
Figure 11. Non-linear yield stress-plastic strain curve 

 

    

  

(a) 1840 elements (b) 7360 elements (c) 29440 elements 
(d) 117760 
elements 

  

Figure 12. Four uniformly refined meshes 

For the convergence study, a set of four uniformly refined meshes are used as shown in Figure 12.  
First, we simulate the problem with local constitutive model. The reaction forces on the moving boundary are 
plotted in Figure 13. From the results, we see that, with different mesh density, the reaction force history 
changes drastically with different crack initiation times and possesses quite different slope, indicating different 
crack propagation speed. This is the effect of mesh sensitivity and is caused by the strain localization existing in 
the continuous model. This mesh sensitivity problem can be remedied by the nonlocal processing. 
Next, we conduct three numerical tests using different values of the regularization length scale, namely 1.0mm, 
1.5mm and 2.0mm. The reaction forces obtained by the numerical tests are shown in Figure 14 (a)-(c). From the 
results, we can see that the effect of mesh sensitivity is minimized. The results from Mesh c and Mesh d are 

45
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almost identical, indicating the solution converges. We also notice that the reaction force at the crack initiation 
increases with the value of regularization length scale. Based on the results of our numerical tests, the 
relationship of the reaction force at the crack initiation to the regularization length scale can be simplified as a 
linear equation and expressed as following equation by linear regression: 

08.39500.5 += nonc RF                                   (8) 

 
Figure 13. Reaction forces by different meshes without regularization 

 

 
(a) nonR =1.0mm 

 
(b) nonR =1.5mm 
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(c) nonR =2.0mm 

Figure 14. Reaction forces by different regularization length scales 

With the experimental results provided by Honda, the averaged total stroke force at the crack initiation is about 
91.38kN and half of this force is 45.69kN, as shown in Figure 15. From the regression equation Eq. (8), we can 
calculate that the regularization length scale nonR of the hot stamped steel is 1.2mm, which will be applied to the 
three-point bending test in the next example.  

 
Figure 15. Reaction forces at crack initiation 

4.3 Three-point bending of U-shaped beam with holes 
In this numerical example, the fracture of a U-shaped steel beam with holes under three-point bending is 
studied. The model set up of the U-shaped beam is illustrated in Figure 16. The U-shaped beam of length of 
600mm, which is connected to a backing plate with nuts and bolts, sits over a pair of metal rods of radius of 
15mm that are located 500mm apart, and is pushed down by another metal rod of radius of 150mm in the 
middle of the beam with a constant velocity of 500mm/s. The cross section of the beam and the backing plate is 
shown in Figure 17 (a), where the thickness of both the U-shaped beam and the back plate is 1.6mm. The beam 
has an open notch in the center of the bottom surface with a width of 10mm and a depth of 5mm and half 
circular cuts on the side surfaces. It also has one pair of holes on the side surfaces of a diameter of 15mm 
located 31mm above the bottom surface and 15mm sideways off the middle of the beam, as shown in Figure 17 
(b). The material of the U-shaped beam is hot stamped high strength steel, same as the material used in the 
previous example. The backing plate is made of JAC980YL steel. The two supporting rods and the punch rod 
are modeled as rigid material since their deformations are small compared to that of the beam.   
The U-shaped beam is modeled with two meshes of different mesh densities. The coarse mesh has 41174 
elements and the fine mesh has 164612 elements. The regularization scale of 1.2mm which is numerically 
calibrated from the previous example is used in this numerical example.    
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Figure 16. U-shaped steel beam under three-point bending 

  
(a) Cross section of the beam (b) Bottom notch and side holes 

Figure 17. Cross section of the beam and openings on beam surfaces 

Figure 18 shows the punch forces obtained with the two meshes to the relationship of the punch displacement. 
Compared to the experiment data, the fine model with the nonlocal processing constitutive law, correctly 
simulates the crack initiation time and peak punch force and the overall force profiles agree well with the 
experimental result. 
Figure 19 shows the crack patterns at three different stages obtained with the fine model. There is no final crack 
pattern from the experiment corresponding to the numerical result, but we can see that there is material failure 
at the upper left side of the hole in the specimen, indicating there may be further crack propagation from there. 
Compared to the experimental results, we can see the numerical simulation captures the right crack pattern. 
 

 
Figure 18 Punch forces vs punch displacement 
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(a) Initial crack (b) Intermediate crack (c) Final crack  
Figure 19. Crack patterns at different stages 

 
5. Conclusions 

 
The 4-node first-order shear-deformable shell element is simple and popular for modeling the mixed shell 
behavior in sheet metal forming and crashworthiness simulations for the past decades. In recent years, modeling 
the material failure in this type of shell has become critical for crashworthiness simulation in modern 
lightweight vehicle design. In this paper, a continuous-discontinuous approach based on the phantom-node 
XFEM method is applied to two widely used shell elements in LS-DYNA and is presented for the shell failure 
analysis. A nonlocal modelling procedure is introduced in this study to minimize the mesh sensitivity problem 
in ductile fracture analysis. 
The numerical results in this study indicate that the present method is capable of simulating the discrete cracks 
in shell structures. Especially, the nonlocal algorithm developed in this study for XFEM shell formulation has 
been shown to effectively minimize the mesh sensitivity problem. A double V-notched test problem is utilized 
to calibrate the radius size of the nonlocal processing zone. The result is verified in the three-point bending test 
in which the present method successfully predicts the crack path with the right force response.   
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