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Abstract 
 
A research team from George Mason University, Ohio State University, NASA and FAA has developed material data and analytical 
modeling that allows for precise input of material data into LS-DYNA® using tabulation and the *MAT_224 material model. The input 
parameters of this model are based on data from many experimental coupon tests including tension, compression, impact, shear and 
biaxial stress states. The material model also includes temperature and strain rate effects.  
The impact physics of Inconel-718 has been incorporated into LS-DYNA using the *MAT_224 material model. Material model failure 
is based on the results of tests conducted by Ohio State University under many differing states of stress and differing test geometries 
and on the ballistic impact tests performed by NASA Glenn Research Center. Validation of the set of material constants for this 
particular alloy, utilizing the tabulated input method of *MAT_224 includes comparisons both to the mechanical property, and 
ballistic impact tests, with emphasis given to strain rate and temperature effects. The predictive performance of the *MAT_224 
material model, including exit velocity and failure mode are evaluated using the test results. It is demonstrated that the strain rate 
sensitivity of Inconel-718, at strain rates which are currently difficult to obtain in mechanical property tests, has a significant effect on 
ballistic impact predictions.  
*MAT_224 is an elastic-plastic material with arbitrary stress versus strain curve(s) and arbitrary strain rate dependency, all of which 
can be defined by the user. Thermo-mechanical and comprehensive plastic failure criterion can also be defined for the material. This 
requires a process of test data reduction, stability checks, and smoothness checks to insure the model input can reliably produce 
repeatable results. Desired curves are smooth and convex in the plastic region of the stress strain curves. 
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Introduction 

 
The impact physics of Inconel-718 has been incorporated into LS-DYNA using the *MAT_224 material model. 
Failure in the material model is based on the results of tests conducted by Ohio State University [5][21] under 
many differing states of stress, differing test geometries, and on the ballistic impact tests performed by NASA 
Glenn Research Center [2] . Validation of the set of material constants for this particular alloy utilizing the 
tabulated input method of *MAT_224 includes comparisons both to the mechanical property, and ballistic 
impact tests, with emphasis given to strain rate and temperature effects. The predictive performance of the 
*MAT_224 material model, including exit velocity and failure mode are evaluated using the test results. While 
developing the failure characteristics of Inconel-718, it was found that the strain rate strain rate sensitivity of 
Inconel-718 at higher strain rates [16] was having a significant effect on predicted penetration velocities. This 
high rate behavior is difficult to obtain in mechanical property tests. Further investigations proved that the strain 
rate sensitivity of Inconel-718, at high strain rates, referred to as Region IV [14], not only has a significant 
effect on penetration velocities, but also on the ability to replicate the physical failure mechanisms.  

 
 

Behavior of Metals at High Strain Rate, Current 
 
Literature Review 
 
A critical aspect in obtaining a representative analysis of ballistic impacts is to include the material behavior at a 
very high strain rate.  Currently, this is a region where it is difficult to measure the properties experimentally. 
As such there is controversy as to the nature of the material behavior physics. In addition, as this published test 
data is limited, there is further disagreement in the field as to the real nature of the general behavior of metals at 
strain rates of 104 s-1 and greater [8]. Here we present an extensive literature review of high strain rate metal 
behavior from Carney, et al [8]. 
 
Campbell and Ferguson [14] found that the shear strength of a mild steel, is dependent on strain rate as follows:  
low strain rate, Region I being characterized by a small, nearly constant increase in strength with the logarithm 
of shear strain rate; Region II where the increase is still constant with the logarithm of the strain rate, but the 
rate dependence is considerably higher; and Region IV, corresponding to strain rates of greater than 5x103 s-1 
where the increase in shear strength is directly proportional to the strain rate. Figure 1, showing these regions, is 
reprinted from [14].  The authors identify Region I as being dominated by long-range internal stresses due to 
dislocations, precipitate particles, and grain boundaries.  Region II is identified as being controlled by the 
thermal activation of dislocation motion, and Region IV being governed by short-range barriers in combination 
with an additional dissipative mechanism, but failure not a function of temperature.  It is also shown that almost 
identical strain rate sensitivity behavior for room temperature steel is obtained from dynamic punching, using 
data from Dowling and Harding [15], and tension, using data from Campbell and Cooper [20], as that from 
shear loading.   
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Figure 1: Variation of lower yield stress with strain rate, at constant temperature. From Ref. [14]. 

 
 
 
Dowling, Harding, and Campbell extended the work on mild steel in reference [22] to aluminum, copper, and 
brass in reference [15].  The dynamic punch loading of all four of these materials showed the same general 
strain rate sensitivity as the mild steel in shear of reference [14].  At room temperature, for all four of these 
materials, there was a small increase in strength, proportional to the logarithm of strain rate, at rates below 10-1 

s-1, greater increase in sensitivity at rates between 10-1 s-1 and 103 s-1, and at rates above 103 s-1 even greater 
sensitivity with the increase being proportional to the strain rate.  While the general behavior of the four metals 
is shown to be similar, the strain rate sensitivity of the four metals is not identical.  
 
Lesuer [17], compiled the stress strain rate response of Ti-6Al-4V titanium alloy from the available literature, 
and included some additional test data.  Very high strain rate data at rates greater than 103 s-1 was included from 
Wulf [23] and Meyer [24].  This data shows titanium exhibiting the same shift documented by Dowling, et al, 
[15] for the other metals.  When strain rates exceed approximately 5x103 s-1, the strain rate sensitivity becomes 
a function of the strain rate. However, while at strain rates lower than 5x103 s-1, it is a function of the logarithm 
of the strain rate. Fig. 9 demonstrates this behavior [17]. Wulf [23] also shows that the strain rate sensitivity is 
not constant. 
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Figure 2: Comparison of the stress-strain rate response of Ti-6Al-4V alloy obtained from this study as well as other studies from the 
literature. From Ref [17]. 
 
 
Frost and Ashby [25] present a strain-rate map for titanium, which shows the mechanisms responsible for the 
various failure behaviors.  This map associates room temperature failure in Regions I and II with obstacle-
controlled plasticity, and failure in Region IV with adiabatic shear.   
 
In review articles Field, et al, [26],[27] present a summary of high rate testing, and discuss using miniaturized 
Hopkinson bars to obtain strain rates on the order of 105 s-1.  They also note the increase in strain rate sensitivity 
at rates 5x103 s-1 and higher and concur with Gorham’s explanation that it is an artifact of the test configuration 
[30][31][32].  However, they point out that some non-compression tests, where inertia should not be a factor, 
also show this phenomenon. 
 
In another review article by Jia and Ramesh [19], the use of miniaturization of the Split-Hopkinson Pressure Bar 
to obtain stress-strain behavior at strain rates of up to 5x104 s-1 is assessed in detail and applied to 6061-T651 
aluminum.  Comparing the presented strain rate sensitivity at strain rates greater than 103 s-1 with published 
quasi-static values of this particular alloy appear to show a increase in strain rate sensitivity, but not to the 
extent shown in Figure 1 and Figure 2.  The authors also state that the explanations of the dramatic increases are 
occasionally controversial. 
 
Dioh, et al, [28] present analytical and numerical evidence which shows that the apparent increase in the strain 
rate sensitivity reported in the literature may result from stress wave propagation effects present in the test.  
Oosterkamp, et al, [29] tested Aluminum Alloys 6082 and 7108 and found that for these alloys, the sudden 
change in the strain rate sensitivity is a testing artifact. Nemat-Nasser, et al, [18] show that there is a dramatic 
increase in strain rate sensitivity at approximately 5x103 s-1 in a NiTi alloy.  They compare images of the failed 
material at low and high strain rates, demonstrating a different failure mechanism. 

In summary, there is disagreement in both the qualitative and quantitative nature of strain rate sensitivity in 
metals at strain rates greater than approximately 105 s-1. While there is uncertainty to the degree to which the 
strain rate sensitivity slope increase is caused by material or structural response, there is significant evidence 
that there is a change in the response of metals at strain rates of approximately 105 s-1 and greater.  
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*MAT_224 Titanium Alloy  
 
Haight et al, characterized a Ti-6Al-4V alloy for *MAT_224 [12]. The material strain rate sensitivity at high 
strain rates was extrapolated from the available data (Figure 3). The data available in this study to measure the 
strain rate sensitivity were up to 103 s-1. Therefore, the material behavior at strain rate higher than 103 s-1 was 
deduced using a linear extrapolation in Region IV. The ballistic impact simulation obtained with this 
extrapolation method, showed a good match with ballistic tests as shown in Figure 4. 
 

 
Figure 3: Ti Stress at 5% Strain – Compression Tests. From Ref.[12] 

 

 
Figure 4: Test Data (blue) and Simulation (red) Results for Ballistic Impact Tests. From Ref.[12] 
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Previous work on Inconel-718 

 
Failure Model Creation by Simulation of Mechanical Property Tests 
 
The input for *MAT_224 consists of 6 tables to describe strain rate sensitivity and failure characteristics. 
The creation of the strain rate sensitivity table (tabk1) and temperature sensitivity table (tabkt) for Inconel-718  

Figure 5: Input deck card *MAT_224, Inconel-718 
material is described in [16]. Using as starting point the strain rate sensitivity table (tabk1) and temperature 
sensitivity table (tabkt) from [16], the *MAT_224 input was completed with the remaining tables, enabling the 
modeling of high velocity impact failures. 
 
First, the tabulated failure surface (lcf) was required. In order to create an effective failure surface, many 
different tests using different geometries that produce varying states of stress were completed. These tests vary 
in both triaxiality and Lode Parameter at the localization point or the point of failure (Figure 6). The mechanical 
property tests were performed by Ohio State University [5][21], who provided the specimen geometry, force 
data, displacement data, strain data, and DIC images. In total, 22 different specimens were used to determine the 
failure surface model (Figure 7). These 22 specimens are listed below (with abbreviations):  

*KEYWORD 
*MAT_TABULATED_JOHNSON_COOK_TITLE 
Inco-718 
$#     mid        ro         e        pr        cp        tr      beta    numint 
         3   8.19E-6 210.00000  0.290000       435       300  0.800000  1.000000 
$#   tabk1     tabkt       lcf       lcg       lch       lci 
         1         2       500       600       700       900 
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. 
Figure 6: Inconel-718, Tests triaxiality vs Lode Parameter 

 
 

• SG1: Plane stress specimen (pure tension) 
• SG2: Plane stress specimen 
• SG3: Plane stress specimen 
• SG4: Plane stress specimen 
• SG5: Axisymmetric specimen (pure tension) 
• SG6: Axisymmetric specimen 
• SG7: Axisymmetric specimen 
• SG8: Axisymmetric specimen 
• SG9: Axisymmetric specimen 
• SG10: Axisymmetric specimen 
• SG11: Plane strain specimen 
• SG12: Plane strain specimen 
• SG13: Plane strain specimen 

• LR1: Combined (tension/torsion) specimen 
• LR2: Combined (tension/torsion) specimen 
• LR3: Torsion specimen 
• LR4: Combined (compression/torsion) speci

men 
• LR5: Combined (compression/torsion) speci

men 
• Punch1: Large diameter punch specimen 
• Punch2: Large diameter punch specimen 
• Punch3: Large diameter punch specimen 
• Compression: Uniaxial (cylindrical) compre

ssion specimen 
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Figure 7: Inconel-718, Failure Surface Generated Using Initial Data Set 

 
The second component which defines the *MAT_224 failure model is the element erosion temperature scaling 
function (lch). This function is a scaling factor for the failure surface that is dependent on the temperature of the 
element. For the Inconel-718, five different temperatures were tested: 300 K, 473 K, 673 K, 873 K, and 1073 K. 
For each temperature, the pure tension plane stress (SG1) specimen was used. It is important to note, that unlike 
many other alloys, reference [21] shows Inconel-718 gets more brittle at elevated temperatures (around 800 ℃). 
Similarly, an element erosion scaling function was also created for different strain rates (lcg). This scaling 
function allows the material model to scale the failure surface as a function of the elemental strain rate. 
 
Each of these strain rate tests were simulated using the same procedure as the original SG1 simulation [16]; 
however here the full material model (strain rate curves, temperature curves, failure surface, temperature scaling 
curve) was used. This means that these rate dependent tests are modeled including all rate and heating effects.  
The final component of the Inconel-718 *MAT_224 material model inputs is a mesh size regularization scaling 
function for element erosion (lci). The mesh size regularization scaling function is critical because element 
erosion simulations do not converge as the mesh size is reduced [11]. This load curve defines the plastic failure 
strain as a function of the element size. The element size is calculated by the square root of the volume over the 
maximum area. The regularization curve is developed by simulating the tension (SG1) specimen with varying 
mesh sizes. Originally, the mesh size for all the specimens was 0.2 mm. Each specimen was re-meshed with 0.1 
mm and 0.4 mm elements, and a scaling function was created for these sizes. 
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New Inconel-718 high strain rate models 

 
The material sensitivity at high strain rate (Region IV) developed in [16] was used with the failure surface and 
failure scaling curves developed as reported in the previous section. While simulating the ballistic impact tests 
performed by NASA Glenn Research Center, the results obtained did not show the correct ballistic limit, nor the 
physical mechanism of failure. The 0.5” Inconel-718 plates, for the impact speeds tested, present a failure 
mechanism known as adiabatic shear band. The initial simulations, performed with *MAT_224 characterized in 
[16] showed a mechanism of crushing-like failure. 
 
Too low of a strain rate sensitivity at high rates was identified as a main cause of this crushing-like failure 
mode. Three different extrapolations for the material strain rate sensitivity were compared. The first is the 
original linear extrapolation of Region IV from [16], the second one is still a linear extrapolation of Region IV 
but with a much higher gradient, and the last one is an extrapolation where the strain rate effects above 103 s-1  
are saturated (see Figure 8). All three of the different extrapolations share the same Region I and Region II, 
which is crucial to match the material characterization tests. All three of the different extrapolations match the 
material characterization tests. 
 
 

 
Figure 8: Strain Rate sensitivity extrapolations above 103 s-1 
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Inconel-718 Current Results 
The current results (Table 1 ,Table 2) from the simulations of the Inconel-718 material model did not accurately 
predict the ballistic limit (velocity at which penetration occurs) measured by NASA tests (Figure 9). The strain 
rates in these analyses went up to 35000 s-1, well into Region IV, while the available mechanical property data 
went up to 103 s-1.  The predicted ballistic limit is higher than that of the tests, and so element erosion is 
deficient. The results for both the baseline elastic projectile model described in [12], and a new *MAT224 
projectile material model based upon very recent testing of Ohio State University, are presented in Tables 1 and 
2.     
 

 
Figure 9: Ballistic limit, Inconel-718 0.5” plate 

 
The most likely reason for insufficient element erosion is that the mesh density is not sufficiently high to 
capture the adiabatic shear bands’ extreme local deformation. Consequently, the analysis does not predict the 
actual rise in temperatures caused by adiabatic heating in the corresponding elements. It appears that in any 
case, the simulations presenting the correct failure mechanism (with the initiation of a crack and a plug) are the 
two with the linear extrapolation in Region IV. The shear band begins to form but does not open fully. It should 
also be noted that the analysis with the stronger gradient in the extrapolated Region IV predicts higher 
temperatures, above 600K, somewhat closer to the temperatures where Inconel-718 becomes brittle.  
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Table 1: Temperature raise in 0.5” Inconel-718 plate. Impact velocity 203 [m/s], 80 elements trough the thickness, *MAT_224 
projectile 
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Table 2: Temperature raise in 0.5” Inconel-718 plate. Impact velocity 203 [m/s], 80 elements trough the thickness, elastic projectile 
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Conclusions 

 
We present evidence that Inconel-718 and Ti6Al4V, have linear stress-strain rate sensitivity at strain rates 
greater than approximately 103 s-1 caused by material response (Region IV). Modeling this sensitivity 
accurately is crucial to predict the ballistic limit within a ballistic simulation. Moreover, modeling this behavior 
accurately allows us to obtain a physical behavioral model consistent with the failure observed in the ballistic 
tests. 
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