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Abstract 
  
Cohesive element approach is a promising way to simulate crack propagation. Commonly used cohesive laws 

include bilinear law, trapezoidal law and exponential law.   However, research has found that when exponential 

cohesive law is unloading or reloading, the traction curve cannot remain continuous when the mixed mode ratio 

changes. (Kregting 2005) [1] In this paper, the discontinuity behavior of exponential law is discussed and a remedy 

is given to handle that. Instead of using a constant unloading slope, we use an unloading and reloading slope that 

changes with mixed mode ratio, like the damage parameter used in bilinear model. Improved Xu-Needleman’s 

exponential cohesive law will be used as an example to show this improvement. Its application in cyclic loading for 

fatigue failure is presented.  

 

Keywords: Cohesive zone model; Improved Xu-Needleman cohesive law; Bilinear cohesive law; Unloading 

behavior; Reloading behavior; Continuity; Cyclic loading  

 

Introduction 
 

The concept of cohesive zone, firstly conceived by Dugdale (1960) [2] and Barenblatt (1962) [3], 

is used to handle the process zone ahead of crack tip that linear elastic fracture mechanics 

(LEFM) doesn’t work well when the process zone is not sufficiently small compared to the 

structural size. It treats the process zone as a cohesive zone in which there exists traction 

between two virtual surfaces ahead of the crack tip and it degrades as the separation between the 

surfaces increases, and when the traction decrease to zero, the virtual surfaces are considered to 

form real crack surfaces. The area under the traction separation curve is the energy consumed to 

open the surfaces, thus connected with physical model. This method is straightforward and 

powerful. It can be used to handle fracture problems whose geometry has or doesn’t have initial 

cracks (or blunt crack), and the latter one is hard to do in LEFM.  

In 1976, Hillerborg [4] first applied cohesive zone model in finite element method to simulation 

crack initiation and growth in concrete beam. In 1994 Xu and Needleman [5] first inserted 

cohesive interface elements to every element interface to allow arbitrary dynamic crack 

propagation and produced good results. These cohesive interface elements have zero thickness 

and are inserted prior to the beginning of simulation, and it’s called intrinsic approach. The 

success of Xu and Needleman brought an encouraging insight into the fracture simulation that 

crack propagation can be simulated in a much easier way where no complicated failure criteria 

and topologies but only the information of cohesive zone model is needed. Similar to Xu and 

Needleman, Ortiz (1999) [6] used zero thickness cohesive element in a way that instead of 

having cohesive interface elements at the beginning of simulation, they are inserted 

progressively to locations where certain criterion is met, like stress reaching material strength 

and this is referred to as extrinsic approach. There are other ways to imbed cohesive zone models 

into fracture simulations, like using Partition of Unity Method (PUM) in Extended Finite 

Element Method [7], or smeared crack approach [8]. 
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Large attention has been put on cohesive traction separation law (TSL) since it is the only 

information controls the cohesive zone model behavior. Various TSLs are proposed by different 

people, the biggest different between these TSLs is the shape. The most common shapes are 

bilinear (Camanho 2003) [9], exponential (Xu 1993)[5], and trapezoidal (Tvergaard V, 

Hutchinson 1992) [10]. Although the shape of TSL are different, they all have common features 

that the area under the traction-separation curve represents the critical energy release rate, and 

the maximum traction represents the maximum tensile or shear strength in the material. Different 

studies have been carried out on the influence of cohesive law shape on the simulation result. K. 

Volokh 2004 [11] used different cohesive laws on a block peel test and showed the shape of 

cohesive zone model is important. Giulio Alfano 2005 [12] conducted a comprehensive study 

and concluded that for a typical double cantilever beam test the solution is practically 

independent from the shape of cohesive law, whereas up to 15% difference in the maximum load 

is recorded in a rigid compact specimen.  

Among these various cohesive models we are especially interested in the exponential cohesive 

model since we observed some discontinuity in the traction curve as it unloads or reloads in a 

different mixed mode ratio, and it will be elaborated in detail in section. 

A cohesive law is called irreversible if it considers damage accumulation and its unloading path 

don’t follow the same loading path. When irreversible cohesive law is used, an unloading and 

reloading path needs to be defined to determine the unloading and reloading behavior. In this 

paper, bilinear and exponential cohesive law’s traction separation law will be briefly reviewed 

and then their unloading and reloading behavior will be examined. A discontinuous behavior 

during the reloading process of exponential law is observed (Figure 1) when it’s reloading at a 

different mixed mode ratio. The mixed mode ratio we used in this paper is the ratio between 

tangential separation rate and normal separation rate: 

𝑟 =  
∆�̇�

∆�̇�
 

Two conditions in combination caused this discontinuity behavior: (1) Unloading and reloading 

behavior is described using a constant slope, and this is what commonly used in literature [13-

15]. (2) The mixed mode ratio 𝑟 changes during the unloading or reloading process.   

 
Figure 1: Discontinuity in Improved Xu-Needleman’s model when reload at different mixed 

mode ratio using constant unloading/reloading slope 

  

Bilinear cohesive law and its unloading and reloading behavior 
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We will start by looking at a bilinear cohesive law by Camanho (2003) [9] . It is formulated 

based on damage mechanics and B-K (1997) mixed mode criterion [16] and was implemented in 

LS-DYNA®’s material library as MAT_138 [17]. In bilinear cohesive law, it considers the mixed 

mode separation (Equation 1) as an input and uses it to calculate the damage parameter 

(Equation 2), which is incorporated in the expression of traction separation relationship: 

 𝛿 = √𝛿1
2 + 𝛿2

2 + 〈𝛿3
2〉 (1) 

Where  𝛿1 and 𝛿2 corresponds to the in plane shear separation; 𝛿3 is the normal separation and is 

taken as 0 when it’s negative.  〈𝑥〉 is the Macaulay bracket:  

 〈𝑥〉 = {
𝑥     𝑖𝑓 𝑥 > 0
0     𝑖𝑓 𝑥 ≤ 0

 (2) 

The damage parameter is: 

 𝐷 = min (
𝛿𝐹

𝛿𝑚𝑎𝑥

𝛿𝑚𝑎𝑥 − 𝛿
0

𝛿𝐹 − 𝛿0
, 1) (3) 

Where 𝛿0(Equation 4) is the mixed mode separation corresponding to maximum traction, it 

corresponds to the point when damage initiates. 𝛿𝐹(Equation 5) is the mixed mode failure 

separation, exceeding which the cohesive element will be considered failed and deleted. 𝛿𝑚𝑎𝑥 

records the history of mixed mode separation 𝛿 and takes the largest positive separation in 

history. In this way the damage parameter cannot decrease and this is how the irreversible 

behavior is controlled. The damage parameter ranges from 0 to 1 and when it reaches 1 the 

cohesive element is considered totally damaged and not able to carry any more load. 

 𝛿0 = 𝛿𝐼
0𝛿𝐼𝐼

0√
1 + 𝛽2

(𝛿𝐼𝐼
0)2 + (𝛽𝛿𝐼

0)2
 (4) 

 𝛿𝐹 =

{
 
 

 
 2(1 + 𝛽2)

𝛿0
[(
𝐸𝑁

𝐺𝐼𝐶
)
𝛼

+ (
𝐸𝑇𝛽2

𝐺𝐼𝐼𝐶
)

𝛼

]

−1 𝛼⁄

      𝛿3 > 0

2𝐺𝐼𝐼𝐶
𝑆

                                                                                 𝛿3 ≤ 0

   (5) 

In these equations, 𝛿𝐼 = 𝛿3 and 𝛿𝐼𝐼 = √𝛿1
2 + 𝛿2

2; 𝛽 = 𝛿𝐼𝐼 𝛿𝐼⁄ , 𝛼 is parameter determined by user. 

After all the damage parameter is define, the traction can be expressed as: 

 𝑁𝑜𝑟𝑚𝑎𝑙 𝑠𝑒𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛:        𝑇 = {
𝐸 × (1 − 𝐷) × 𝛿3        0 < 𝛿3 < 𝛿𝐹

𝐸 × 𝑆𝑐𝑎𝑙𝑒 𝐹𝑎𝑐𝑡𝑜𝑟 × 𝛿3        𝛿3 < 0
 (6) 

 𝑇𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛:         𝑆 = 𝐺 × (1 − 𝐷) × 𝛿1 (𝑜𝑟 𝛿2)  (7) 

Where 𝐸 and 𝐺 are elastic and shear modulus in cohesive law, and they are usually taken as a 

much higher value than the elastic modulus of bulk material to minimize the extra compliance.   
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The way the damage parameter is formulated in bilinear model makes it incorporate the mixed 

mode behavior thus no matter how the mixed mode ratio changes, the bilinear cohesive law can 

always remain continuous.  As an example, a 3D and 2D plot is given in Figure 2, in the first 

cycle of loading, the mixed mode ratio is 𝑟 = 1; in the reloading cycle, mixed mode ratio 

changes to 𝑟 = 1 16⁄ . 

 

Figure 2: Continuous behavior of bilinear cohesive law during unloading and reloading process 

when mixed mode ratio changes 

 

Exponential cohesive law and its discontinuity during unloading and 

reloading process 
 

The exponential cohesive law proposed by Xu and Needleman (1994) [5]was formed potential 

based. For exponential cohesive law, however, the damage parameter usually used in literature is 

not closely related to mixed mode separation. In this paper an improved Xu-Needleman’s 

cohesive law is adopted as an example. It is proposed by (Bosch 2006) [18] to address the energy 

inconsistency in the mixed mode decohesion process. The energy consistency is tested by 

separating the cohesive element in normal direction first for a certain distance ∆𝑛 before failure, 

then separate in the tangential direction till failure. The normal and tangential energy versus 

normal displacement in the first step is plotted in Figure 3 (a). And we can see in the improved 

exponential cohesive model the total energy is constant no matter how ∆𝑛 changes. This is not 

the case in the bilinear model (Figure 3 (b)).  
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Figure 3: (a) Energy consistency of improved exponential cohesive model; (b) Energy 

inconsistency of bilinear cohesive model  

The modified Xu-Needleman’s cohesive law has the following form: 

 𝜙(∆𝑛, ∆𝑡) = 𝜙𝑛 [1 − (1 +
∆𝑛
𝛿𝑛
) 𝑒𝑥𝑝 (−

∆𝑛
𝛿𝑛
) 𝑒𝑥𝑝 (−

∆𝑡
2

𝛿𝑡
2)] (8) 

 𝑇𝑛 =
𝜕𝜙

𝜕∆𝑛
=
𝜙𝑛
𝛿𝑛
(
∆𝑛
𝛿𝑛
) 𝑒𝑥𝑝 (−

∆𝑛
𝛿𝑛
) 𝑒𝑥𝑝 (−

∆𝑡
2

𝛿𝑡
2) (9) 

 𝑇𝑡 =
𝜕𝜙

𝜕∆𝑡
= 2

𝜙𝑡
𝛿𝑡
(
∆𝑡
𝛿𝑡
) (1 +

∆𝑛
𝛿𝑛
) 𝑒𝑥𝑝 (−

∆𝑛
𝛿𝑛
) 𝑒𝑥𝑝 (−

∆𝑡
2

𝛿𝑡
2) (10) 

Where 𝛿𝑛 = 𝜙𝑛/(𝑒𝑇𝑛), and 𝛿𝑡 = 𝜙𝑡/(𝑇𝑛√𝑒/2). Park (2011) [44] stated that potential based 

models proposed under the condition of monotonic separation path needs independent unloading 

and reloading relations. The unloading and reloading behavior of the improved Xu-Needleman 

cohesive law is usually did by linear interpolation, like in paper of Kullari 2014 [15]. When 

cohesive zone starts to unload, a ratio between the traction and separation at that point is 

calculated and used as the unloading and reloading slope. The damage parameter in normal and 

tangential direction is given as: 

 𝑑𝑛 = 1 − exp (−
∆𝑛,𝑚𝑎𝑥
𝛿𝑛

) exp (−
∆𝑡,𝑚𝑎𝑥
2

2𝛿𝑡
2 ) (11) 

 𝑑𝑡 = 1 − exp (−
∆𝑡,𝑚𝑎𝑥
2

2𝛿𝑡
2 )exp (−

∆𝑛,𝑚𝑎𝑥
𝛿𝑛

) (1 +
∆𝑛,𝑚𝑎𝑥
𝛿𝑛

) (12) 

And traction during the unloading and reloading process is calculated by using: 

 {
𝑇𝑛 = (1 − 𝑑𝑛)𝐾𝑛∆𝑛
𝑇𝑡 = (1 − 𝑑𝑡)𝐾𝑡∆𝑡

   (13) 

Where  𝐾𝑛 = 𝐺𝐼𝐶 𝛿𝑛
2⁄ = 𝑒2𝑇𝑛

2/𝐺𝐼𝐶 and 𝐾𝑡 = 2𝐺𝐼𝐼𝐶 𝛿𝑡
2⁄ = 𝑒𝑇𝑡

2/𝐺𝐼𝐼𝐶 are the initial slope of the 

cohesive law in normal and tangential direction. This works fine when mixed mode ratio doesn’t 

change during the process, as shown in Figure 4.  
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Figure 4: Linear interpolation for unloading and reloading behavior of improved exponential law 

when the mixed mode ratio doesn’t change  

However, when mixed mode ratio changes, for example, from 𝑟 = 1 in the first load cycle to 

𝑟 = 0.5 in the second load cycle, the traction curve cannot remain continuous, like in Figure 5. 

This is because unlike the damage parameter in bilinear law, which is constantly updating with 

mixed mode ratio through 𝛿𝑚𝑎𝑥 , 𝛿0 𝑎𝑛𝑑 𝛿𝐹, the interpolation based slope for exponential law can 

only consider the mixed mode state when it start to unload.   

 

Figure 5: Discontinuity during unloading and reloading process of improved exponential law 

using constant slope when the mixed mode ratio changes  

The consequence of this discontinuity is not yet discussed in literature to the best of author’s 

knowledge, but such discontinuity is for sure undesirable in numerical simulation and could 

possibly cause some numerical instabilities. For crack propagation problems, where unloading 

and reloading is likely to happen as energy keeps being released at the crack tip; For fatigue 

simulation where millions of cycles of reloading happen, it is possible that the mixed mode ratio 

changes during this process. So it is important to guarantee a continuous and robust unloading 

and reloading behavior of the cohesive law.  

 

Remedies to fix the discontinuity in unloading and reloading process of 

exponential cohesive law when mixed mode ratio changes 
 

Kregting in 2005 [1] has talk about this discontinuity and tried to solve it using extrapolation to 

update the constant slope in the new load cycle. His remedy is based on an assumption that 

mixed mode ratio doesn’t change within a load cycle. When the cohesive element starts to 

unload, the mixed mode separation ∆𝑐𝑦𝑐𝑙𝑒1 is recorded and the corresponding tangential 

separation ∆𝑡 and normal separation ∆𝑛 are used to calculate the unloading slope. When a new 

loading cycle starts, the mixed mode ratio 𝑟 for that cycle is captured and extrapolation is did to 

find a new pair of tangential and normal separation ∆𝑡, ∆𝑛 that will reach the mixed mode 

separation  ∆𝑐𝑦𝑐𝑙𝑒1 of the first cycle.  And this new pair of separations is used to calculate the 

new reloading slope.  It works well when mixed mode ratio is constant within one loading cycle 

(Figure 6).  



14
th

 International LS-DYNA Users Conference Session: Simulation 

 

June 12-14, 2016  1-7 

 

 

Figure 6: Reloading behavior using Rene’s extrapolation method when mixed mode ratio is 

constant within a cycle 

However, when he mixed mode ratio changes during reloading period, for example it first 

reloads following 𝑟 = 1 then changes to 𝑟 = 2 before it reaches maximum separation ∆𝑚𝑎𝑥 of 

last cycle, the curve can no longer be continuous using Rene’s extrapolation method because the 

unloading and reloading slope using this method is constant within one loading cycle thus cannot 

capture that change (Figure 7).  

 

Figure 7: Discontinuity in exponential cohesive law using extrapolation method when mixed 

mode ratio changes within a load cycle  

To fix that a new continuous damage parameter that considers the mixed mode ratio change is 

proposed in this paper. The idea is to release the tangential separation in damage factor for 

normal traction, and release the normal separation in damage factor for tangential traction 

(Equation 14, 15). 

 𝑑𝑛 = exp (−
∆𝑛,𝑚𝑎𝑥
𝛿𝑛

) exp (−
∆𝑡
2

2𝛿𝑡
2) (14) 

 𝑑𝑡 = exp (−
∆𝑡,𝑚𝑎𝑥
2

2𝛿𝑡
2 ) exp (−

∆𝑛
𝛿𝑛
) (1 +

∆𝑛
𝛿𝑛
) (15) 

Where ∆𝑛,𝑚𝑎𝑥 and ∆𝑡,𝑚𝑎𝑥 are defined as: 

 ∆𝑛,𝑚𝑎𝑥= √∆𝑚𝑎𝑥2 − ∆𝑡
2 (16) 
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 ∆𝑡,𝑚𝑎𝑥= √∆𝑚𝑎𝑥2 − ∆𝑛2  (17) 

In this way, the mixed mode interaction is considered for both the unloading, reloading slope and 

the point on max separation envelop of last cycle. Then the traction will be calculated using the 

same equation: 

 {
𝑇𝑛 = 𝑑𝑛𝐾𝑛∆𝑛
𝑇𝑡 = 𝑑𝑡𝐾𝑡∆𝑡

   𝑤ℎ𝑒𝑛 ∆𝑚≤ ∆𝑚,𝑚𝑎𝑥 (18) 

When ∆𝑚= √∆𝑛2 + ∆𝑡
2 reaches the separation envelope again, the traction separation relationship 

will follow the improved exponential cohesive law again and ∆𝑚,𝑚𝑎𝑥 will increase 

correspondingly. Using the new damage parameter helps remain the continuity of cohesive law 

no matter what loading and unloading path is like, as shown in Figure 8, in which the mixed 

mode ratio changed during the reloading period. Note bilinear cohesive model also has the 

capability to remain continuous even when mixed mode ratio changes within one load cycle.   

 

Figure 8: Continuity in exponential cohesive law using proposed unloading and reloading 

method when mixed mode ratio changes within a load cycle  

 

Implementation of the cohesive zone model to interface fatigue crack growth 
 

CZM has been used on fatigue prediction by different authors. ([19][20]) Roe 2003 [13]adopted 

Xu-Needleman’s exponential cohesive model for cyclic loading fatigue analysis. His model 

incorporated typical damage evolution laws: (1) damage only starts to accumulate if a 

deformation is greater than a critical magnitude; (2) The increment of damage is related to the 

increment of deformation at the current load level; (3) There exist an endurance limit the stress 

below which can proceed cyclically without producing failure. Based on these three 

requirements he gave the evolution equation: 

 �̇�𝑐 =
|∆̇|

𝛿∑
[
�̅�

𝜎𝑚𝑎𝑥
− 𝐶𝑓]𝐻(∆ − 𝛿0)  𝑎𝑛𝑑  �̇�𝑐 ≥ 0 (19) 

Where H is Heaviside function. The present damage evolution law is formulated using effective 

cohesive zone quantities. The resultant separation, ∆, and its increment are defined as: 
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 ∆= √∆𝑛2 + ∆𝑡
2,     ∆̇= ∆𝑡 − ∆𝑡−∆𝑡 (20) 

The result traction, �̅�  is defined as: 

 �̅� = √𝑇2 + 𝑆2 (21) 

A new parameter called cohesive zone endurance limit 𝜎𝑓 is incorporated via 𝐶𝑓, the ratio of 𝜎𝑓 

and the initial undamaged cohesive normal strength: 

 𝐶𝑓 =
𝜎𝑓

𝜎𝑚𝑎𝑥,0
,   0.0 < 𝐶𝑓 < 1.0 (22) 

After the damage rate is calculated, the current cohesive strength is then scale down by 

 𝜎𝑚𝑎𝑥 = 𝜎𝑚𝑎𝑥,0(1 − 𝐷), 𝜏𝑚𝑎𝑥 = 𝜏𝑚𝑎𝑥,0(1 − 𝐷), (23) 

During the unloading and reloading process where the current separation is smaller than the 

largest value of last cycle, the traction is calculated by 

 𝑇𝑛 = 𝑇𝑛,𝑚𝑎𝑥 + 𝑘𝑛(∆𝑢𝑛 − ∆𝑢𝑛,𝑚𝑎𝑥) (24) 

 𝑇𝑡 = 𝑇𝑡,𝑚𝑎𝑥 + 𝑘𝑡(∆𝑢𝑡 − ∆𝑢𝑡,𝑚𝑎𝑥) (25) 

Where 𝑘𝑛, 𝑘𝑡 used in Roe’s paper are constant values. In this paper that constant slope is 

replaced by a parameter that changes with mixed mode ratio to account for mixed mode ratio 

change between each loading cycles. An example is carried out to show schematically how our 

unloading and reloading methodology of exponential cohesive law help the continuity of the 

cohesive law. Make the tangential and normal separation change cyclically and in such a way 

that the mixed mode ratio changes between each cycle (Figure 9). Using constant unload and 

reload slope, we can see it the discontinuity in the cohesive law is very obvious (Figure 10 (a)). 

However, for our proposed unloading and reloading methodology, the cohesive law remains 

continuous very well (Figure 10 (b)).Another verification is done by making the separation a 

function of |sin (𝑡)|, like shown in figure 11. Again constant unloading slope (Figure 12 (a)) 

shows discontinuity and our proposed method is not (Figure 12 (b)). 
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Figure 9: Cyclic separation history in cohesive model   

 

Figure 10: (a) Cyclic loading of exponential cohesive law using constant unloading and 

reloading slope (b) Cyclic loading of exponential cohesive law using proposed unloading and 

reloading methodology 

 

Figure 11: Cyclic separation history in cohesive model   
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Figure 12: (a) Cyclic loading of exponential cohesive law using constant unloading and 

reloading slope (b) Cyclic loading of exponential cohesive law using proposed unloading and 

reloading methodology 

 

Conclusion 
 

In this paper a brief review of cohesive zone model is carried out, and the unloading and 

reloading behavior of bilinear and exponential law is analyzed. It’s found that the commonly 

used constant unloading slope method for exponential law could lead to discontinuity when the 

mixed mode ratio changes. Thus a new methodology for unloading and reloading behavior of 

exponential law is proposed and verified on fatigue cyclic loading using two different loading 

histories. The result proves its ability to retain continuity under arbitrary load and unload history 

that constant unloading slope method couldn’t have.  
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