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Abstract 
 
Smoothed Particle Hydrodynamics (SPH) is a robust meshfree approach for the simulation of large 

plastic deformation processes such as high speed cutting, forging, extrusion, and friction welding. Often, 

heat transfer is an important consideration for such industrial processes; for this reason, the effects of 

heat loss from convection, radiation, or flux from the free surface should be included. However, because 

of the meshfree nature of SPH, the elements located at the free surface can change, and are not typically 

known at each time step. This difficulty makes application of thermal boundary conditions problematic in 

SPH simulations. 

 

In this work, we describe a robust and efficient adaptive thermal boundary condition algorithm. Our 

approach uses a straightforward free surface extraction algorithm. Once the free surface elements are 

found, the appropriate thermal boundary condition can be applied. We describe the SPH boundary 

formulation for the Dirichlet (defined temperature), Neumann (defined flux), and Robin (convection) 

boundary conditions. The algorithm is validated against the finite element method and an example of an 

industrial application, friction stir welding, is presented. 
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Introduction 
 

Numerical simulation of large deformation industrial processes such as forging, extrusion, high speed 

cutting, and friction stir welding has typically been a difficult task with mesh based methods. These 

processes, also known as solid state methods tend to lead to large levels of mesh distortion requiring the 

use of complicated and time consuming re-meshing algorithms. In recent years, a lot of work has gone 

into simulating these solid state processes with meshfree methods such as smooth particle hydrodynamics 

(SPH). In the SPH approach, the conservation equations are solved at particle points using a collocation 

type approach that does not require a background mesh. This differs from so called meshfree methods 

such as element free Galerkin (EFG) [1-5], finite point method (FPM) [6], and particle finite element 

method (PFEM) [7] among others that require a background mesh for numerical integration. SPH was 

originally developed by Lucy [8] and Gingold and Monaghan [9] in 1977 for astrophysics simulations. 

Since then, SPH has been applied to many different types of problems such as free surface fluid flows 

[10-14], magneto-hydrodynamics [15], casting [16-18], forging, [19], explosion welding [20], and high 

speed cutting [21, 22] to name a few.  

 

A number of research groups have worked on simulating the friction stir welding process (FSW) with 

SPH. One of the first implementation was by Bhojwani [23] using an isothermal approach (in  

LS-DYNA). At that time, the code did not include heat transfer, thus, the important aspects of thermal 

softening could not be included. Since then, Timesli et al. [24], as well as Tartakovsky et al. [25], have 

developed a 2D SPH code to simulate FSW. Since their codes are 2D, their approach is best suited for 

thin plate welding or for the plunge phase where the thermal and stress gradients are negligible in the 

third dimension.  Pan et al. [26] have worked on simulating the FSW process in 3D. They have focused 

on using a coupled thermal-fluid approach with a Sellars-Tegart material model. Their tactic does not 

allow them to determine defects, residual stresses, or distortions since elastic strains are not included in 

the fluid model. Fraser et al. [27, 28] have also focused on 3D simulation of FSW, however, they use a 

solid mechanics approach and are able to incorporate the effect of elastic strains. Both these research 

groups have included the important effects of thermal softening and solve for the temperature distribution 

in the work pieces using an SPH heat transfer algorithm.  

 

In this paper, we will describe the implementation of an adaptive thermal boundary condition algorithm 

for SPH. Because of the meshfree nature of SPH, the free surface particles are not inherently known at 

each time step. We introduce a fast and efficient free surface detection algorithm along with the 

description of the formulation of the fixed temperature, flux, and convection SPH formulation. The 

algorithms are validated for a simple semi-infinite solid case. Following that, a cooling simulation of a 

friction stir welded joint is presented. The goal of the simulation is the prediction of the temperature 

distribution during cooling and the residual stresses. 

 

The SPH Method for Heat Transfer 
 
Conduction in a continuum is governed by the second order partial differential equation that is commonly 

referred to as the heat diffusion equation. In its most general form, the equation is: 

  

𝜌𝐶𝑝

𝜕𝑇

𝜕𝑡
= ∇ ∙ (𝑘∇𝑇) + �̇� Eqn 1 

 

Here we have made no assumptions as to the dependence of the thermal conductivity, 𝑘, on temperature 

or space. 𝜌 is the density of the material, 𝐶𝑝is the specific heat capacity, 𝑇 is the temperature, 𝑡 is the 

time, �̇� is a heat generation heat (W/m
3
),  and ∇ is the nabla operator.  
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In solving the parabolic PDE, we must discretize the domain into material points. Because of this 

discretization, we can safely presume that 𝑘 is at most a function of temperature (if 𝑘 is a function of 

position, it can be given a different value at the discretization points). This allows the thermal 

conductivity to be moved outside of the influence of the gradient operator: 

 
𝜕𝑇

𝜕𝑡
=

1

𝜌𝐶𝑝

(𝑘∇2𝑇 + �̇�) Eqn 2 

 

With this form of the heat equation in mind, we must then find an SPH approximation for the Laplace 

operator (∇2). According to Jubelgas [29], an appropriate SPH approximation of the Laplace operator is: 

 

∇2𝐹 = 2 ∑
𝑚𝑗

𝜌𝑗

(𝑇𝑖 − 𝑇𝑗)

|𝑥𝑖𝑗|
2 𝑥𝑖𝑗

∂𝑊𝑖𝑗

∂𝑥𝑖
𝛽

𝑁𝑖

𝑗=1

 Eqn 3 

 

where 𝑚𝑗 𝜌𝑗⁄  is the volume of the j
th
 particle, 𝑇𝑖 and 𝑇𝑗 are the temperature at the i

th
 and j

th
 particles, 𝑁𝑖 is 

the number of neighbors of the i
th
 particle, 𝑥𝑖𝑗 = 𝑥𝑖 − 𝑥𝑗 is the position vector between the two particles,  

and ∂𝑊𝑖𝑗 ∂𝑥𝑖
𝛽⁄  is the gradient of the smoothing function (for the sake of brevity, the details are not 

provided here, the interested reader should consult [15, 30-33] among others). Applying the SPH 

approximation of ∇2 to the heat conduction equation leads to: 

 

𝑑𝑇𝑖

𝑑𝑡
=

1

𝜌𝑖𝐶𝑝𝑖

∑
𝑚𝑗

𝜌𝑗

(𝑘𝑖 + 𝑘𝑗)(𝑇𝑖 − 𝑇𝑗)

|𝑥𝑖𝑗|
2 𝑥𝑖𝑗

∂𝑊𝑖𝑗

∂𝑥𝑖
𝛽

𝑁𝑖

𝑗=1

 Eqn 4 

 

This formulation gives very good results as long as the difference between 𝑘𝑖 and 𝑘𝑗 is not significant 

(spatial variation of 𝑘 due to temperature dependence. However, when 𝑘 is a function of temperature 

(𝑘(𝑇)), Error! Reference source not found. is not precise and should be written as: 

 

𝜕𝑇

𝜕𝑡
=

1

𝜌𝐶𝑝
(𝑘∇2𝑇 +

𝑑𝑘

𝑑𝑇
(∇T)2 + �̇�) Eqn 5 

 

Eqn 5 uses the expansion of ∇ ∙ (𝑘∇𝑇) by the product rule. The 𝑑𝑘 𝑑𝑇⁄ (∇T)2 term can be reasonably 

approximated by using the harmonic mean for the thermal conductivity (Cleary and Monaghan 

[34])instead of the arithmetic mean, the SPH heat diffusion equation takes the form: 

 

𝑑𝑇𝑖

𝑑𝑡
=

1

𝜌𝑖𝐶𝑝𝑖

∑
𝑚𝑗

𝜌𝑗

(4𝑘𝑖𝑘𝑗)

(𝑘𝑖 + 𝑘𝑗)

(𝑇𝑖 − 𝑇𝑗)

|𝑥𝑖𝑗|
2 𝑥𝑖𝑗

∂𝑊𝑖𝑗

∂𝑥𝑖
𝛽

𝑁𝑖

𝑗=1

 Eqn 6 

 

This formulation has been shown to give good results for ordered and disordered particles. The variation 

in the thermal conductivity can be greater than a factor of ten with this approach. This is the formulation 

that is used in SPHriction-3D. The heat diffusion equation is integrated in time using a forward difference 

scheme (explicit). Rook et al. [35] have developed an implicit heat transfer algorithm for SPH. However, 

for most solid state industrial processes, a coupled thermal-mechanical solution is used and the time step 

is governed by the speed of sound in the material. For this reason there is no advantage to using an 

implicit HT solution approach. 
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Surface Detection and Normal Vectors 

 
Before treating SPH thermal boundary conditions, we need to have a methodology to determine the 

particle on the free surface of the SPH domain. This is very important for setting up a general tactic to 

describe surface heat flux and convection.  

 

In order to determine the particle surface normal, we can use the fact that particles on the surface of the 

SPH domain have an incomplete set of neighbors. We can find a vector (𝑥𝐶𝑂𝑀𝑖
𝛼) between the i

th
 particle 

and the center of the particle cluster by: 

 

𝑥𝐶𝑂𝑀𝑖
𝛼 =

1

𝑀
∑ 𝑚𝑗𝑥𝑖𝑗

𝛼

𝑁𝑖

𝑗=1

 Eqn 7 

 

This can be thought of as a normal vector pointing out of the solid at each surface particle. The total mass 

of the particle cluster is 𝑀, the mass of the j
th
 particle is 𝑚𝑗, and the distance vector between the i

th
 and the 

j
th
 particle is 𝑥𝑖𝑗. We immediately recognize that the particles that are within the body of the solid will 

essentially have a null value for 𝑥𝐶𝑂𝑀𝑖
𝛼. Next, we need to be able to evaluate which particles reside on 

the surface of the solid domain. This can be accomplished by comparing the length of the normal vector 

to the smoothing length, ℎ𝑖, of the particle and to a problem specific number of neighbors, 𝜉. 

 

𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝑛𝑜𝑑𝑒 = {1, 𝑥𝐶𝑂𝑀𝑖
≥

1

4
ℎ𝑖 𝑎𝑛𝑑 𝑁𝑖 ≤ 𝜉

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 Eqn 8 

 

 
Figure 1 – SPH neighbors for the solid body 

 

In this manner, the particles that are on the surface of the domain will be tagged with a value of one and 

the internal particles will be tagged with a value of zero. We have typically been using 𝜉 ≈ 44 in 3D with 

the smoothing length factor of 1.2; however, the number of neighbors used as the cutoff is problem 

specific. A general procedure is to run the model without the surface and normal extraction and 

investigate the neighbors. Figure 1 shows the neighbors for a general solid body; we can see that the 

particles on the surface of the body generally have less than ~44 neighbors. The surface normal vectors 
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are important for the thermal boundary conditions (in order to determine the surface particles) as well as 

for the contact algorithm (not discussed in this paper, see Fraser et al. [21] for full details).   

 

We can see how well the algorithm works for an arbitrary shaped domain (a solid teddy bear) in Figure 2. 

The left side of the image shows the normal vectors and the right side shows only the surface particles.  

 

 
Figure 2 – Normal vectors and surface particles 

 

We are not the first to come up with a normal vector and surface extraction algorithm. To our knowledge, 

we are one of the only groups to evaluate the normal vectors using the center of mass concept. Marrone et 

al. [36] use an algorithm that is ideal for fluid simulations. They use a two-step method, first the particles 

that are close to the free surface are found by using the properties from the renormalization matrix. Then 

in the second step, they evaluate the geometric properties of the SPH elements found in the first step. 

Their process requires scanning a conical region beyond the surface elements. Their method supposes that 

the renormalization approach has been used. Our method is much less complicated as we simply need to 

find the center of mass. This is accomplished with a very simple equation that is evaluated very quickly. 

Other authors such as Randles and Libersky [37] have used a “discrete color” approach. The color of the 

particles is evaluated by exploiting the completeness of the interpolation of a SPH element. If the 

interpolation is incomplete, the element is assigned a color that associates it as a boundary particle.  

 

Thermal Boundary Conditions 
 

The particular solution of an ODE or a PDE requires boundary conditions and/or initial conditions. In this 

sub-section, we will discuss how the three main thermal BCs are implemented in SPHriciton-3D: 

 

1. Imposed surface temperature – this is a Dirichlet type boundary condition (1
st
 type), the value of 

the function is specified on the boundary for the duration of the simulation 

2. Imposed heat flux – this is a Neumann type boundary condition (2
nd

 type), the value of the 

gradient of the function is specified on the boundary 

3. Surface convection – this is a Robin type boundary condition (3
rd

 type), a linear combination of 

the value of the function and is derivative are provided 

 

A schematic of the four main boundary conditions is provided in Figure 3. The mathematic definition of 

the boundary condition as well as a representation of the condition is given in the image.  
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Figure 3 – Thermal boundary conditions 

 

Isothermal Surface 
 

The isothermal boundary condition can easily be enforced by constraining the nodal temperature of the 

concerned SPH elements. A value for the temperature can be prescribed at the beginning of the 

simulation. The prescribed temperature can be a function of time if needed. It is important to exclude the 

SPH elements with a prescribed temperature from the temporal integration. Using this approach the 

Dirichlet BC can be enforced exactly in SPH. 

 

Isothermal BC Validation 

 

We can use the semi-infinite solid approximation as a validation against the results from SPHriction-3D. 

Figure 4 shows the solid block with the initial temperature field and the final temperature after 200.0 

seconds. The whole block is initially at 20°C except for the end that is held at 500°C. 
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Figure 4 – Initial and final temperature field (t = 200.0 s) 

 

The temperature of the block as a function of time and space can be found from: 

 

𝑇(𝑥, 𝑡) = 𝑇𝑠 + (𝑇𝑖 − 𝑇𝑠)erf (
𝑥

2√𝛼𝑡
) Eqn 9 

 

Where 𝑇 is the temperature at a point for a specific time, 𝑡. 𝑇𝑠 is the isothermal end temperature, 𝑇𝑖 is the 

initial temperature of the block, erf is the Gaussian error function, 𝑥 is the axial location along the block,  

and 𝛼 is a material specific thermal constant. The results for the first 50 seconds of the simulation are 

shown in Figure 5. 

 

 
Figure 5 – Nodal temperatures (comparison between theory and SPHriction-3D) 

 

Surface Heat Flux 
 

The heat flux, 𝑞", boundary condition can be formulated by recognizing that heat is flowing through the 

surface of the solid body. The quantity of energy (𝑞) flowing through the surface per unit of time will be: 

 

𝑞 = 𝑞"𝐴𝑠 Eqn 10 

 

where 𝐴𝑠 is the area of the surface that heat is flowing through. Since we are working with a discretized 

solid body, we can recognize that the heat is flowing through individual surface segments that are 

associated to individual SPH elements. We can determine the temperature increase per unit time for a 

surface particle from: 
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𝑑𝑇𝑖

𝑑𝑡
=

𝑞𝑖

𝑚𝑖𝐶𝑝𝑖

=
𝑞"𝑖𝐴𝑖

𝑚𝑖𝐶𝑝𝑖

 Eqn 11 

 

where 𝐴𝑖 is the associated surface area of an SPH element. Figure 6 shows a schematic of the surface area 

of an SPH element for a uniform grid. The surface area is the square of the inter particle distance. 

 

 
Figure 6 – Typical surface area for a uniform distribution 

 

For a uniform distribution of SPH elements on the surface of the solid domain, the following SPH 

formulation gives excellent results: 

 

𝑑𝑇𝑖

𝑑𝑡
=

1

𝜌𝑖𝐶𝑝𝑖

∑
𝑚𝑗

𝜌𝑗

(4𝑘𝑖𝑘𝑗)

(𝑘𝑖 + 𝑘𝑗)

(𝑇𝑖 − 𝑇𝑗)

|𝑥𝑖𝑗|
2 𝑥𝑖𝑗

∂𝑊𝑖𝑗

∂𝑥𝑖
𝛽

𝑁𝑖

𝑗=1

+
𝑞"𝑖𝐴𝑖

𝑚𝑖𝐶𝑝𝑖

 Eqn 12 

 

A simple evaluation of the units on the left and right hand side of the equation shows that the units 

balance as they should: 

 
𝑑𝑇

𝑑𝑡
[
𝐾

𝑆
] =  

𝑞"𝑖𝐴𝑖

𝑚𝑖𝐶𝑝𝑖

[
𝐾

𝑆
] 

 

On the other hand, for non-uniform particle distributions, the above approach may not give accurate 

results. The heat flux boundary condition can be written using an SPH approach such that: 

 

𝑑𝑇𝑖

𝑑𝑡
=

1

𝜌𝑖𝐶𝑝𝑖

∑
𝑚𝑗

𝜌𝑗

(4𝑘𝑖𝑘𝑗)

(𝑘𝑖 + 𝑘𝑗)

(𝑇𝑖 − 𝑇𝑗)

|𝑥𝑖𝑗|
2 𝑥𝑖𝑗

∂𝑊𝑖𝑗

∂𝑥𝑖
𝛽

𝑁𝑖

𝑗=1

+
1

𝑚𝑖𝐶𝑝𝑖

∑
𝑚𝑗

𝜌𝑗
𝑞"𝑗𝐴𝑗𝑊𝑖𝑗2𝐷

𝑗∈𝑠𝑢𝑟𝑓𝑎𝑐𝑒

 Eqn 13 

 

In this formulation, the SPH sum for the heat flux term is performed only on the surface nodes and 𝑊𝑖𝑗2𝐷
 

is a 2D smoothing kernel that is consistent with the kernel used for the conduction part of the equation. In 
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order to use this formulation, a neighbor list that operates on the surface nodes only is needed. This can 

easily be accomplished because we have already determined which SPH elements reside on the surface.  

 

Surface Flux Validation 

 

The validation test model for the surface flux will be a semi-infinite solid. One end of the solid will be given a 

prescribed heat flux boundary condition. The model is created in LS-DYNA using finite elements and in 

SPHriction-3D using SPH elements. All the parameters are the same in both models. A surface heat flux of 

1.0E+05 W/m
2 

is specified on the left end of the block. Figure 7 shows the results from LS-DYNA and 

SPHriciton-3D. The magnitude and location of the temperature field is the same in both cases.  

 

LS-DYNA 

 

SPHriction-3D 

 

Figure 7 – End heat flux BC results comparison 

 

The evolution of the temperature at three nodes is shown in Figure 8 for the LS-DYNA and SPHriction-

3D results. The node locations are at x = 0, x = 1/2L and x = L. The SPHriction-3D solution tracks 

directly over the LS-DYNA solution. 

 

 
Figure 8 – End heat flux boundary condition validation 
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Surface Convection 
 

Convective heat transfer from the surface of the aluminum work pieces is an important part of the puzzle. 

Without convection, the simulated temperature will be much higher than they should be. The 

development of the convection boundary condition follows very closely that of heat flux BC. The heat 

flux through the surface is replaced by: 

 

𝑞" = ℎ𝑐𝑜𝑛𝑣(𝑇∞ − 𝑇𝑠) Eqn 14 

 

where ℎ𝑐𝑜𝑛𝑣 is the coefficient of convection at the free surface,  𝑇𝑠 is the surface temperature, and 𝑇∞ is 

the free stream temperature. The surface temperature should be very close to the nodal temperature of a 

SPH element on the boundary. We can now write the SPH heat equation with convection boundary 

conditions for a uniform grid: 

 

𝑑𝑇𝑖

𝑑𝑡
=

1

𝜌𝑖𝐶𝑝𝑖

∑
𝑚𝑗

𝜌𝑗

(4𝑘𝑖𝑘𝑗)

(𝑘𝑖 + 𝑘𝑗)

(𝑇𝑖 − 𝑇𝑗)

|𝑥𝑖𝑗|
2 𝑥𝑖𝑗

∂𝑊𝑖𝑗

∂𝑥𝑖
𝛽

𝑁𝑖

𝑗=1

+
ℎ𝑐𝑜𝑛𝑣𝑖

𝐴𝑖(𝑇∞ − 𝑇𝑖)

𝑚𝑖𝐶𝑝𝑖

 Eqn 15 

 

As with the heat flux BC, 𝐴𝑖 is the surface area of an SPH element on the solid boundary. The equation 

can also be used to approximate radiation boundary conditions since the coefficient of convection can 

easily be a function of temperature in the code. For a non-uniform particle spacing, the following is 

expected to give a better approximation: 

 

𝑑𝑇𝑖

𝑑𝑡
=

1

𝜌𝑖𝐶𝑝𝑖

∑
𝑚𝑗

𝜌𝑗

(4𝑘𝑖𝑘𝑗)

(𝑘𝑖 + 𝑘𝑗)

(𝑇𝑖 − 𝑇𝑗)

|𝑥𝑖𝑗|
2 𝑥𝑖𝑗

∂𝑊𝑖𝑗

∂𝑥𝑖
𝛽

𝑁𝑖

𝑗=1

+
1

𝑚𝑖𝐶𝑝𝑖

∑
𝑚𝑗

𝜌𝑗
ℎ𝑐𝑜𝑛𝑣𝑗

𝐴𝑗(𝑇∞ − 𝑇𝑗)𝑊𝑖𝑗2𝐷
𝑗∈𝑠𝑢𝑟𝑓𝑎𝑐𝑒

 

Eqn 16 

 

We can again check the units: 

 
𝑑𝑇

𝑑𝑡
[
𝐾

𝑆
] =  

ℎ𝑐𝑜𝑛𝑣𝑖
𝐴𝑖(𝑇∞ − 𝑇𝑖)

𝑚𝑖𝐶𝑝𝑖

[
𝐾

𝑆
] 

 

Convection BC Validation 

 

A simulation model is built in LS-DYNA with Finite elements and in SPHriction-3D with SPH elements 

in order to validate the convection boundary condition. In the first case, the block is initially at 20°C, and 

the left end is heated with a convection boundary condition. The same parameters are used in both 

models. The coefficient of convection is set to 100.0 W/m
2
K and the external temperature is set at 500°C. 

The specific heat capacity and thermal conductivity of the solid are set to 1.0 J/kgK and 3000.0 W/mK. 

The simulation runs for 10.0 seconds. A graphical results comparison is provided in Figure 9. We can see 

that the temperature contours and the relative magnitude of the temperature is essentially the same in LS-

DYNA and SPHriction-3D.  
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LS-DYNA 

 

SPHriction-3D 

 

Figure 9 – Convection BC on one surface of block 

 

Let’s take a closer look at how the temperature varies at three discrete points in the solid throughout the 

simulation. We will investigate at x = 0, x = 1/2L and x = L. The results are shown in Figure 10, we can see 

that the values obtained from SPHriction-3D agree very well with the values obtained from LS-DYNA. 

 

 
Figure 10 – Results comparison for end convection validation case 

 

More often than not, the convection must be applied to all of the surfaces of the solid body. In Figure 11,  

the same convection conditions are applied to all the free surfaces of the model. Here, the results for the 

temperature distribution are shown at the end of the simulation (t = 10.0s). We can see that the 

temperature distribution is the same in LS-DYNA and SPHriction-3D. The magnitude of the temperature 

is not an exact fit because the SPH method suffers from incomplete interpolation; never the less, the 

results are very good. 

 

LS-DYNA SPHriction-3D 
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Figure 11 – All surface convection boundary condition 

 

Industrial Example – Cooling of a FSW Joint 

 
We are now in a position to use the new algorithm to determine the residual stresses in a friction stir 

welded joint. The new adaptive thermal boundary conditions will allow us to remove heat from the free 

surface of the work pieces and predict the final deformed shape and the locked in stresses. The friction 

stir welding process can be explained by the four main phases of the process: 

 

Phase 1 – Plunge: The FSW tool is pressed into the work pieces (WPs) with a fixed rpm 

Phase 2 – Dwell: The FSW tool remains stationary with a fixed rpm. This phase serves to 

continue to heat the WPs 

Phase 3 – Advance: The FSW tool advances with a constant velocity and rpm. The weld is 

formed during this phase 

Phase 4 – Cooling: The tool is retracted and the completed joint cools to room temperature  

 

During Phase 1 and 3, enormous levels of plastic deformation occur in the aluminum in the region close 

to the tool (mechanically affected zone). These are the phases that are responsible for creating a high 

strength weld. As the WPs cool in Phase 4, the locked in stresses are redistributed. The final deformed 

shape of the plates and the residual stresses are found when the WPs have completely cooled.   

 

Table 1 – Material properties used in cooling analysis 

Parameter 6061-T6 (Work Piece) Base and Tool (Steel) 

k (W/mK) 175 55 

𝜌 (kg/m
3
) 2700 7850 

𝐶𝑝 (J/kgK) 895 485 

𝐸 (GPa) 70 200 

𝜎𝑦0 (MPa) 324 N/A 

𝑇𝑚𝑒𝑙𝑡 (°C) 580  N/A 

𝑇𝑟𝑜𝑜𝑚 (°C) 20 N/A 

𝑚  1.34 N/A 

 



14
th

 International LS-DYNA Users Conference Session: ALE-FSI 

 1-13 

  

  
Figure 12 – Initial conditions at start of cooling analysis (clockwise from top left): Mixing results in 

the weld zone; temperature distribution (°C); effective stress (Pa), surface particles 

 

A fully coupled thermal-mechanical approach is used based on Fraser et al. [21, 38]. The simulation starts 

from the final state of a FSW simulation (end of Phase 3) with 800 rpm and 660 mm/min advance. A 

video of all the phases of the FSW process (clamp, plunge, dwell, advance, retract, cool) can be viewed 

here: https://www.youtube.com/watch?v=pbjZnLV3yXA. The initial conditions for the cooling analysis 

are shown in Figure 12. The material properties are shown in Table 1. The convection coefficient, ℎ𝑐𝑜𝑛𝑣 

is taken as 10 𝑊 𝑚2𝐾⁄ . Time scaling is used for the cooling simulation since the time to cool the plate 

entirely is on the order of ~ 30 minutes. Since the mechanical deformation is very minimal during the 

cooling phase, we have found that we can use a time scaling factor of 1000 without incurring momentum 

errors (ratio of kinetic energy to internal energy remain small). To accomplish this, the thermal 

conductivity and the heat loss coefficient are scaled accordingly. A thermal softening perfect plasticity 

model is used for the aluminum work pieces of the form: 

 

𝜎𝑦 = 𝜎𝑦0 (1 − (
𝑇 − 𝑇𝑟𝑜𝑜𝑚

𝑇𝑚𝑒𝑙𝑡−𝑇𝑟𝑜𝑜𝑚
)

𝑚

) Eqn 17 

 

We have typically been painting the surface of the work pieces a mat black in order to capture the 

temperature distribution with an infrared camera (IRcam) during the FSW process. The emissivity of the 

paint, 𝜀, is ~ 0.95. Because of this, we have found that heat loss due to radiation accounts for a large 

portion of the heat loss. The model that we have used for this simulation follows closely the development 

for convection. The total heat flux at the surface is then a combination of that from convection (𝑞"𝑐𝑜𝑛𝑣) 

and radiation (𝑞"𝑟𝑎𝑑): 

 

𝑞"𝑡𝑜𝑡𝑎𝑙 = 𝑞"𝑐𝑜𝑛𝑣 + 𝑞"𝑟𝑎𝑑 = ℎ𝑐𝑜𝑛𝑣(𝑇∞ − 𝑇𝑠) + 𝜀𝜎𝑆𝐵(𝑇𝑠𝑢𝑟𝑟
4 − 𝑇𝑠

4) Eqn 18 

 

𝜎𝑆𝐵 is the Stefan Boltzmann constant (5.67x10
-8

 W/m
2
K

4
) and 𝑇𝑠𝑢𝑟𝑟 is the temperature of the 

surroundings (taken as 20°C). Figure 13 shows the temperature distribution in the finished weld (using 

https://www.youtube.com/watch?v=pbjZnLV3yXA
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the IRcam). We can see that the temperature distribution predicted by SPHriction-3D (see upper right 

image in Figure 12) is in good agreement with the IRcam image. Note that the temperature in the weld 

track cannot be measured by IRcam since this zone does not have the mat black paint. The emissivity of 

the aluminum in the unpainted weld zone is very low (~ 0.1) and leads to an inaccurate reading of the 

temperature.  

 

 

 
Figure 13 – IRcam image from FSW experiment at end of advancing phase 

 

The temperature distributions for four different points in time are shown in Figure 14. We can see that the 

distributions are strongly influenced by the location of the supports and that the last region of the WPs to 

cool is the weld zone. This is because the supports are made of steel and have a significant thermal mass 

to absorb the energy from the WPs.  

 

    
Figure 14 – Temperature profiles for (from left to right): t = 24 s, 32 s, 105 s, and 524 s (final step) 

 

Four “thermocouples” were inserted into the WPs in order to record the temperature history 

throughout the simulation. The temperature at a so called “thermocouple” or TC for short is 

determined in the SPH simulation model by interpolating from a set of SPH points in the 

neighborhood of the TC. In this sense, the temperature at the i
th

 TC is: 

 

𝑇𝑇𝐶 𝑖
=

∑
𝑚𝑗

𝜌𝑗
𝑇𝑗𝑊𝑖𝑗

𝑁𝑖
𝑗=1

∑
𝑚𝑗

𝜌𝑗
𝑊𝑖𝑗

𝑁𝑖
𝑗=1

 Eqn 19 
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TC3 and TC4 are inserted on the retreating and advancing side of the weld, 5mm from the weld line. TC1 

and TC5 are 23 mm from the weld line (again on the retreating and advancing side). All thermocouples 

are embedded at a distance of one quarter the length of the WPs (from the end of the weld) and 2.5 mm 

deep from the surface of the WPs. Figure 15 shows the temperature history for the four TCs. From the 

graph, we are able to infer that the region closest to the weld zone are hottest. Furthermore, according to 

the simulation results, the temperature on the retreating side is slightly hotter than that on the advancing 

side. This can be explained by the movement of the material: as the tool rotates, the material on the 

advancing side is heated and transported to the retreating side.  

 

 
Figure 15 – Temperature history for TC1, TC3, TC4, and TC6 

 

 
Figure 16 – Residual stress results from FSW experiment using DIC  
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We have used a Digital Image Correlation (DIC) (http://www.gom.com/metrology-systems/system-

overview/aramis.html) system called ARAMIS, developed by GOM. The system is used to determine the 

residual stresses in the work pieces. A stochastic pattern was painted on the un-welded plates. The 

software is able to calculate the deformation on the surface of the plate by comparing the deformed state 

to the initial (reference) image. The measured residual stresses (showing effective stress in Pa) from 

experiment are shown in Figure 16. The residual stresses cannot be measured in the weld zone because of 

the large plastic deformation and mixing present in the weld track. The residual stresses determined at the 

end of the SPH simulation are shown in Figure 17. The highest stresses are concentrated close to the weld 

zone as was found experimentally.  

 

 
Figure 17 – Predicted residual stress from SPH model 

 

The stress contours found experimentally and numerically are in close agreement. Differences are mainly 

due to the complex nature of the heat loss through from the WPs to the supporting structure. We can see 

in Figure 13 that the welded plates are much hotter than the supporting structure, once the weld is 

finished, heat flows into the steel supporting structure quickly cooling the WPs. Other discrepancies are 

explained by the difference in measuring techniques; the DIC method we have used provides a 2D 

approximation of the stresses on the surface, whereas the SPH model is full 3D. 

 

Conclusion 

 

In this work, we have described a robust and efficient adaptive thermal boundary condition algorithm that 

allows the accurate simulation of industrial processes where the mechanical behavior is strongly affected 

by the temperature history in the domain. We have shown that the algorithm gives good results in 

comparison to the finite element method for fixed temperature flux and convection boundary conditions. 

We have also shown an application of the proposed method for determining the residual stresses and 

distortions in a friction stir welding joint. 
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