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Abstract 
 
In this paper, new numerical modeling of material flow in the thermo-mechanical friction stir 
welding process is presented. In this numerical model, the discretization in space is derived by 
the meshfree Galerkin method using a Lagrangian meshfree convex approximation. The discrete 
thermal and mechanical equations are weakly coupled as the time advances using a forward 
difference scheme. A mortar contact algorithm is employed to model the stirring effect and heat 
generation due to frictional contact. Heat conductance between contacting bodies is considered 
as a function of contact pressure. A two-way adaptive procedure is introduced to the coupled 
thermo-mechanical system to surpass potential numerical problems associated with the extensive 
material deformation and spatial discretization. In each adaptive phase, a consistent projection 
operation utilizing the first-order meshfree convex approximation is performed to remap the 
solution variables. Finally, a three-dimensional thermo-mechanical coupled friction stir welding 
problem is analyzed to demonstrate the effectiveness of the present formulation. 
 
Keywords: Friction stir welding, finite element, meshfree, adaptive 

 
 

1. Introduction 
 

Friction stir welding (FSW) is an innovative welding method [Dawes 1996] that is viable for 
jointing aluminum alloys, cooper, magnesium and other low-melting point metallic materials. It 
combines frictional heating and stirring motion to soften and mix the interface between two work 
pieces yielding to a solid and fully consolidated weld. Since FWS is a solid state jointing 
process, a high quality weld can be achieved with the absence of solidification cracking, 
porosity, oxidation and other defects typical to traditional fusion welding. FSW offers high levels 
of repeatability, limited energy consumption and ease of automation, and thus gains its 
popularity in aerospace, automotive, railway and nuclear industries. The FSW process consists of 
four basic phases namely, the plunging, stirring, welding and retraction. The plunging phase 
starts with plunging the rigid cylindrical spinning tool into the joint line until the shoulder 
contacts the top surface of work piece. In stirring phase, the heat is generated by means of work 
from frictional contact and material plastic deformation. This heat is dissipated into the welding 
zone and results in an increase of temperature and material softening. In particular, the heat 
generated from frictional contact plays an important role in determining the material rheological 
behavior and the success of the deposition welding process. The welding phase is initiated by 



Session: Fluid Structure Interaction 13th International LS-DYNA Users Conference 

1-2 

moving either the tool or the work piece and enables the materials of two work pieces to mix 
together. Finally, the welding process stops and the tool retract from the work piece. These four 
FSW phases constitute complicated thermo-mechanical conditions which are very hard to 
determine experimentally [Lorrain 2009]. Despite many successful experimental investigations 
have already been conducted to the adjustment of tool profile and input weld parameters such as 
tool speed, feed rate and tool depth, several aspects of the FSW are still poorly understood and 
require further study [Neto 2013]. In particular, understanding the temperature distributions in 
the work piece during FSW process is an essential subject [Pashazadeh 2013] due to its effects 
on the material flow, grain size, residual stresses and subsequently, the strength. 

It is recognized that a correct numerical model of the FSW process should avoid any 
unnecessary assumptions. A list of requirements [Neto 2013] for FSW analysis code should 
include (1) Rotational boundary condition; (2) Frictional contact algorithm; (3) Support for very 
high levels of deformation; (4) Elastic-plastic or elastic-viscoplastic material models; and (5) 
Support for complex geometry. The main difficulty in finite element modeling of FSW process 
consists in dealing with high levels of deformations involving in the complex material flow due 
to frictional heating and stirring motion. The numerical complexity in Eulerian formulation is 
concerning the needs to model free surface, the welding heat source, and material histories. An 
alternative approach is the use of adaptive meshfree method [Lu 2006, Lu 2008, Wu 2009, Wang 
2009, Hu 2010]. The objective of this study is to present a meshfree Galerkin approach [Wu 
2014] using the Lagrangian meshfree convex approximation [Wu 2011] and a two-way adaptive 
procedure for the simulation of FSW process. The reminder of the paper is organized as follows: 
The coupled thermo-mechanical equations in FSW problem and their numerical model using 
Lagrangian meshfree convex approximations are given in Section 2. The computational 
strategies for the two-way adaptive procedure and the remap algorithm are given in Section 3. 
Finally, a numerical example is presented in Section 4. 

 
 

2. Governing Equation 
 

2.1. Thermal Problem 

We consider the transient heat transfer response of a FSW work piece in a three-dimension case. 
We assume the domain of the work piece 3 is a bounded polygon with disjointed 
boundary crcnd  . The notation d  describes a Dirichlet boundary 

imposed by a temperature θ. n is the Neumann boundary prescribed by a heat flux. We also 

assume that d and n do not vary with time. The boundary c denotes the contact surface 

with a thermal exchange due the conduction between the tool and work piece. The 
boundary cr is the surface with the thermal exchange due to convection and radiation. We 

further assume the heat generation in the work piece is only due to the plastic deformation and 
frictional contact between tool and work piece. Giving an internal heat generation rate Q per unit 
deformed volume from the plastic deformation, the strong form of the thermal energy 
conservation equation reads  

[,0]     TinQCp  q      (1) 

  k:q                 (2) 
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  pQ εS ::                   (3) 

subject to boundary conditions 

[,0]      Ton dd                         (4) 

[,0]    Tonq- nn nq                         (5) 

    [,0]     Tonh- c
t

toolcd  uλnq                 (6) 

    [,0]     Tonhh- craracv  nq           (7) 

and initial condition at time t=0 

        0, 0 inXX                                   (8) 

where ρ is the mass density and Cp is the heat capacity. Eq. (2) is known as the Fourier law 
[Hughes 2000] with k denoting the isotropic thermal conductivity.  is the gradient operator with 
respect to current position x and “ ·” denotes the divergence operator. The Taylor-Quinney 
[Marusich 1995] coefficient η in Eq. (3) takes into account the fraction of heat generated by the 
plastic deformation energy dissipation. S and pε are the deviatoric part of Cauchy stress and the 
rate of plastic straining, respectively. θd in Eq. (4) is the temperature imposed on the Dirichlet 
boundary. qn in Eq. (5) is the normal heat flux imposed on the Neumann boundary. hcd, hcv and hr 

are heat transfer coefficients for conduction, convection and radiation, respectively. The notation 
n defines the outward unit normal vector on ∂Ω. The second term on the right-hand side of Eq. 
(6) represents the rate of frictional energy dissipation where β is the fraction of heat generated by 
the frictional contact. λ is the Cauchy contact traction and  tu is the contact slip rate which 
represents the jump in velocity across the contact. θa is the ambient temperature and θtool is the 
temperature of the tool. X in Eq. (8) is the position vector in the reference configuration. It is also 
necessary to match the initial condition with the Dirichlet boundary condition at time t=0: 

    dd on      0,0 XX                                                 (9) 

The variational formulation of the thermal energy conservation equation can be written to find 
the temperature field     dd onHt    :, 1  X  such that for arbitrary 

variation   donH    0:1
0   the following equation is satisfied  

 

       










crc

n

dshhdsh

dsqdQdkdC

arcv
t

toolcd

np





uλ 



                         
   (10) 

 
2.2. Mechanical Problem 
 
The motion of the FSW work piece is governed by the equation of motion with the prescribed 
boundary and initial conditions. The mechanical problem is given as follows: 

          [,0]    Tin   bσu                           (11) 
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subject to Dirichlet and Neumann boundary conditions 

[,0]  on   Tgg  uu                           (12) 

  [,0]     Ton h  hnσ                               (13) 

together with unilateral contact conditions  

[,0]     

0

0

0

Ton

g

-

g

c
n

nc 














nλ                                (14) 

and Coulomb friction conditions 

 
 









[,0]    

][ :0 then  if

][ then  if
Ton cttnt

tnt

λuλ

0uλ







                  (15) 

and initial conditions 

  )(0, 0 XuXu                                     (16) 
  )(0, 0 XuXu                                       (17) 

where b is the body force vector and σ is the Cauchy stress obtained from the constitutive law. 
The notation g describes a Dirichlet boundary imposed by a displacement ug and h is the 

Neumann boundary prescribed by a surface traction h with 0 hg . The notation g in Eq. 

(14) is the contact gap function. nc denotes the outward unit normal to contact surface c . λt is 

the tangential component of contact traction λ. Eq. (15) states that the vector of slip 
rate  tu should be in the direction of tangential traction. μ(θ) is the temperature dependent friction 

coefficient.   stands for the Euclidean norm. 0u and 0u are the initial displacement and velocity, 

respectively.     
Subsequently, the variational equation for the mechanical problem in FSW process is 

formulated using the integration by part to find the displacement 
field     gg ont    :, 1  uuHuVXu , such that for arbitrary 

variation   g0 on   :1 0  uHuVu , the following equation is satisfied:  

     


cn

dsdsddd s uλuhubuσuu  :            (18) 

Now the FSW problem is stated by coupling the mechanical weak form in Eq. (18) with the 
thermal weak form in Eq. (10) and subjecting to the prescribed Dirichlet boundaries and initial 
conditions.  
 
2.3 Thermo-mechanical Equations 
 



13th International LS-DYNA Users Conference Session: Fluid Structure Interaction 

 1-5 

The standard Galerkin method is formulated on a finite dimensional space h employing 
the thermal weak form of Eq. (10) to find   hh t  such that 

 
        h

0
hh

a
h

rcv
ht

tool
h

cd

h
n

hhhh
p

Θdshhdsh

dsqdQdkdC

crc

nT
















              uλ 



     (19) 

with  

                     0, 0 inh XX                                                       (20) 

where  II
h ZIΨ  :span  and ZI is an index set.  

IZIIΨ 
 are meshfree shape functions. 

Similarly, we have the mechanical weak form of Eq. (18) to find   hh t VXu , such that 

  hhhhhhshh

cn

dsdsddd 0   : Vuuλuhubuσuu     
       (21) 

with initial conditions defined in Eqs. (16) and (17).  
In Lagrangian formulation with meshfree discretization, discrete points that carry the primary 

unknown variables are attached to the same set of material points throughout the course of 
deformation. Under this consideration, the node set  NP1,I,Z I1  X  is the set of nodes 
defined in the reference configuration. In practice, the set of meshfree nodes can be taken from 
the finite element nodes created by a finite element mesh generator. The material displacements 
and temperature fields are approximated using the Lagrangian meshfree shape functions [Chen 
1996; Wu 2001] as    

          
 


NP

1I
XI

NP

I
III

h ΩtΨtΨt, XuXXuXXu     ~,
1

                      (22) 

      XI

NP

I
I

h ΩtΨ,t 


XXX   
~

1

                                                            (23) 

where  tII ,:~ Xuu   and    : ,I It t  X  are called the ‘generalized’ displacement and 

temperature of node I. Conventional meshfree approximations are generally not interpolants, i.e, 
   tt I

h
I ,~ Xuu   and    ,h

I It t  X . In this study an alternative meshfree approximation that 

restores a weak Kronecker-delta property at the boundary, the meshfree convex approximation 
[Sukumar 2004; Arroy 2005; Wu 2011], is utilized to allow the direct treatment of Dirichlet 
boundary conditions for FSW problem. We employ the first-order convex GMF [Wu 2011] 
method to obtain the meshfree convex approximation using the inverse tangent basis function 
and the cubic spline weight function.  

Substituting Eqs. (22) and (23) into Eqs. (21) and (19) using meshfree convex approximation, 
the semi-discrete equations of the coupled thermo-mechanical problem can be expressed by the 
following algebraic equations, 

 PθHθC 
~~                                 (24) 
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int~
FFFUM  cext

                                  (25) 

where 

   
X

XJIp0IJ dΩΨΨCρC                              (26) 

 
c cr

1 -T
IJ il lj I, j J,i 0 X cd I J cv r I JH kF F Ψ Ψ J dΩ h Ψ Ψ ds h h Ψ Ψ ds

  
     

X

                         (27)  

   
X n c cr

p t
I 0 I X n I cd tool I cv r a IΩ Ω Ω

P η : J Ψ dΩ q Ψ ds h Ψ ds h h Ψ ds  
   

            S ε λ u (28) 

   
X

XJI0IJ dΩΨΨρ IM                                                       (29) 

 
 Xh Ω X0IΩ I

ext
I dΩJΨdSΨ bhF                                      (30) 


cΩ

I
c

I dsΨλF                                                                  (31) 

 
XΩ

XIX0
int

I dΩΨ:σF                                                    (32)  

xF X                                                                          (33) 

  Fdet0 J                                                                       (34) 
T

00 J  σFσ                                                                     (35) 

 Tib θθθ
~

,
~
                                                                 (36) 

 Tib UUU
~

,
~                                                                 (37) 

    NPNINBi
NI

iiib
NB

bbb   ,
~

,,
~

,
~~

 ,,,, 2121   θθ                (38) 

   i
NI

iiib
NB

bbb uuuUuuuU ~,,~,~~
 ,,,, 2121                               (39) 

where cF  is contact force, and λ is contact traction calculated using mortar contact algorithm 
[Puso and Laursen 2004, Yang et al. 2005]; X denotes the material gradient operator. For the 
implementation purpose, all terms associated with the volume integration are evaluated on the 
reference configuration and the surface integration terms are computed on the current 
configuration. Using Nanson’s formula, the Cauchy stress appears in the internal force term is 
transformed to the first Piola-Kirchhoff stress tensor σ0. Note that we have used the chain 

rule IX
T

I ΨΨ  F for the spatial gradient operation in the above derivations. iθ
~

and iU
~

 are 
vectors of generalized nodal values for the interior nodes to be solved for the temperature and 
displacement fields, respectively. With the meshfree convex approximation, the unknown nodal 
vectors of temperature and displacement fields for boundary nodes are denoted by Θb and Ub 

respectively. For convenience, the finite element mesh is taken as the integration cells [Chen 
1996; Wu 2001] for the domain integration. Each integration cell occupies an initial volume 
needed in the domain integration and the one-point integration rule is used for each integration 
cell in the computation. The integration cells also provide a set of boundary nodes information 
for the contact traction calculation as described in the next sub-section.   
 
2.4 Time Discretization 
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The highly coupled and nonlinear system in the FSW thermo-mechanical equations are difficult 
to solve by simultaneous time-stepping algorithm. The large and un-symmetric system in the 
fully coupled thermo-mechanical equations inevitably involves the convergent problem and is 
expensive to solve, particularly in the presence of large deformation, severe contact conditions 
and contact-induced thermal shock. In the application of interest, explicit and staggered time-
stepping schemes [Marusich 1995; Koric 2009] are considered in this study. 

The thermal equation in Eq. (24) is marched through time using the forward difference 
algorithm [Hughes 2000] to give 

nnn tθθθ ~~~
1                                                        (40) 

         nnnn
l PθHθC 

~~                                                     (41) 

It is also suffices to integrate the mechanical equation (25) by the central difference integration 
algorithm to yield 

n
nn

nn

tt
UUU  ~

2

~~ 1
2/12/1


 

                                      (42) 

2/111

~~~
  nnnn t UUU                                                       (43) 

int~
n

c
n

ext
nn

l FFFUM 
                                                 (44) 

where the capacity matrix C and mass matrix M are advantageously replaced by the lumped 
matrices Cl ad Ml in thermal and mechanical equations respectively in the explicit analysis. 
Using the Lagrangian meshfree shape functions, the position vector for integration point is 
updated by  

     


 
NP

I
nIgIng tt

1
11 ,~, XxXXx                                          (45) 

where the integration point position Xg is initially located at the centroid of the integration cell 
and moves with material flow to its current position gx (X,tn+1). In contrast to the finite element 

method, the current position of integration point xg need not reside in the integration cell. 
Following the notation in Eq. (23),    11 ,~:,~

  nIInI tt XuXXx  is defined to be the 

“generalized” current position of node I. Subsequently, the deformation gradient at t=tn+1 is 
computed using Eqs. (34) and (45) to give 

  

        

1 1
1

1 1
1 1

( )
, ( , )

                         , ,

NP
I g

ij g n iI n
I j

NP NP
I g I g

iI iI n ij iI n
I Ij j

Ψ
F t x t

X

X u t u t
X X



 


 
 






 
   

 



 



 

X
x X X

X X
X X

   (46) 

For the computational efficiency in explicit time integration method, the material derivatives of 
meshfree shape functions are always computed and stored at the first Lagrangian time step and 
reuse them during the time stepping.      
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In the staggered time-stepping scheme, the thermo-mechanical system is partitioned into two 
phases, the isothermal mechanical phase and the rigid conduction phase, during each time 
increment. The isothermal mechanical phase assumes a constant temperature during the 
mechanical computation and the rigid conduction phase considers the constant heat generation in 
the thermal computation at fixed configuration. A numerical stability requirement limits the 
maximum time increment in the explicit method for each phase. The overall stable time 
increment is then defined as the smaller of the two phases. In practice, the mechanical equations 
always set the critical time step for stability due to much smaller time scale associated with the 
mechanical problem.       
 
 

3. Two-way Adaptive Procedure and Remap Algorithm 

As mentioned earlier in the introduction, the major difficulty arises from the numerical modeling 
of FSW process when it comes to large deformation simulation of the complex material flow in 
frictional heating and stirring motion. Strictly Lagrangian approach based on a fix mesh in finite 
element method experiences difficulty in dealing with mesh entanglement due to unconstrained 
material flows. Although the meshfree Galerkin method using Lagrangian kernel helps improve 
the mesh entanglement problem in finite element method, it is prohibitively extending the range 
of meshfree applicability to model severe deformation that goes beyond the Lagrangian 
description [Rabcuzk 2004], i.e, the discretized deformation mapping ceases to be injective: 

    0,det0  ng tJ XxF                                                    (47) 

One way to sidestep this numerical difficulty is to consider the semi-Lagrangian kernel [Guan 
2011] used for the Reproducing Kernel Particle method [Liu 1995; Chen 1996] in impact and 
penetration simulation. The advantage of semi-Lagrangian kernel approach lies in its ability to 
reorder the neighboring nodal information such that a reconstruction of the Lagrangian meshfree 
shape functions is allowed and the possibility of non-positive Jacobin determinant in Eq. (47) is 
suppressed. Another way to evade the non-positive Jacobin determinant problem is to adopt an 
adaptive procedure similar to the combined rh-adaptive remeshing or global remeshing 
techniques in the finite element method. When compared with the semi-Lagrangian kernel 
approach, the adaptive method is able to refine the nodal density and generate accurate free 
surfaces for a better simulation in manufacturing problems. In this study, the adaptive method 
based on the concept of global remeshing is adopted and an anisotropic unstructured tetrahedral 
mesh is pursed to model the complex geometries evolved in the formation of stirring zone. A set 
of meshfree nodes is extracted from the unstructured tetrahedral mesh created by a mesh 
generator and used for the reconstruction of the Lagrangian meshfree shape functions. The set of 
contact boundary nodes can also be obtained from the generated tetrahedral mesh. While most 
research in adaptive error estimation has focused on the development of an accurate error 
estimator on linear analysis, formidable difficulties still remain in nonlinear analysis. For 
example, the well-known Z-Z error [Zienkiewicz 1987] developed based on super-convergence 
properties for linear problems cannot quantitatively be estimated in nonlinear problem. Therefore 
Z-Z error estimator can only be considered as an error indicator in nonlinear problems. In 
engineering practice the use of an efficient error indicator turns out to be more desirable 
particularly in the explicit time integration method. In this study, a point-wise error indicator 
based on the shear deformation is used to trigger the adaptive procedure for the von Mises 
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material. The global mesh generation in this study is comprised of an anisotropic surface 
Delaunay triangulation [George 1998] and an Advancing Front tetrahedral mesh generation 
[Lohner 1988]. An adaptive solution is then completed by mapping the solution variables 
between the old and new spatial discretization. Apparently, the element or patch-based remap 
procedures [Bucher 2007] are not suitable for the meshfree method. In this study, we introduce a 
second-order accurate projection operation based on the meshfree convex approximation [Wu 
2011] to transfer the solution valuables. If the global remesher fails to decompose the 
computation domain into tetrahedrons, an alternative meshfree adaptive procedure is taken to 
reconstruct the neighboring nodal information using the old discretization. A sketch of the two-
way adaptive procedure is illustrated in Fig. 1.   
 

 
Figure 1. A sketch of the two-way adaptive procedure in two-dimensional case.    

 
The basic steps in an adaptive solution strategy are summarized as below.  

(a) Compute the initial solution. 
(b) Estimate the point-wise error indicator in solution and interactively trigger the mesh 

generator as error indicated.   
(c) Input the deformed mesh at the beginning of each adaptive step and use it to define the 

surface domain.   
(d) Approximate the surface domain by a generalized Farin’s algorithm [Farin 1986].  
(e) Perform the anisotropic surface triangulation based on a metric map with Delaunay 

kernel [George 1998] and yield the initial front of triangular faces. If there are any non-
Delaunay facets in the constraining surfaces, insertion of Steiner points [Moller 1995] 
will be made and surfaces edges and faces will be recovered by a series of swaps or flips. 
In this study we exclusively consider the non-intersecting facets are triangle. 
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(f) Conduct the Advancing Front method which consists of filling the empty space defined 
by the initial front and creating tetrahedrons one at time and updating the front with 
created faces. A quadtree data structure [Samet 1990] is utilized for the proximity search 
and insertion or deletion of the front points.   

(g) Reconstruct the neighboring nodal information using the old discretization if any step in 
(d)~(f) fails. Go to step (i).  

(h) Perform the projection operation, transfer the solution valuables and update all nodal and 
internal valuables. 

(i) Initialize the solution and construct the approximations based on the new nodal 
distribution using the Lagrangian meshfree shape functions.   

(j) Resume the numerical solution procedure. 

A customized point-wise error indicator ϑ introduced in step (b) is based on a shear deformation 
measure and is computed from the deformation gradient in Eq. (33). This error indicator is 
defined by 

     t
Ig

ji
ngij

g

t
I YjitFY 









  xXx ,,,max5.0,,0:
3

,

                       (48) 

where t
IY denotes the collection of integration points at time t=tn. The value 0.5 in Eq. (48) is 

made in average-sense since the deformation gradient is generally not symmetric. When the 
point-wise error indicator exceeds an acceptable level, the adaptive procedure is triggered to 
create a new discretization in the deformed configuration. The implementation details of the 
anisotropic surface Delaunay triangulation and the Advancing Front tetrahedral mesh generation 
can be found elsewhere [George 1998; Lohner 1988] and therefore is omitted in this paper. After 
a new mesh is generated, the remap procedure is performed to transfer the solution valuables 
from the old spatial discretization to the new spatial discretization. We denote the variables 
before and after the each remap to be superscripted with “–“ and “+”, respectively. Subsequently, 
we denote the unstructured tetrahedral meshes before and after remap at time = tn by 

nM and 

nM . For nodal value 

Iz  its remap is defined by the following projection operation 

      



  


nIJJI

NP

1J
JII MzΦz XXXX   ~                                  (49) 

From the definition in Eq. (22), we have 

      



  


nK

NP

1J
JJKJKK MXzΦz   ~ XXX                                (50) 

or equivalently 

     




 
NP

1K
KK

T

JKJJ zAz XX~                                        (51) 

where    KJJK ΦA X . Substituting Eq. (51) into (49) yields 
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where  

     




 
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                                       (53) 


KΦ in Eq. (52) is the remap function which satisfies the following interpolation property 
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as well as the following linear polynomial reproduction property 
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Since the remap algorithm preserves linearly-varying nodal values, it is second-order accurate in 
space. In each remap procedure, 

JΦ , J=1,… NP  are the newly constructed meshfree shape 

functions evaluated on the current configuration based on the old spatial discretization 
nM . The 

tilde symbol in Eq. (49) stands for a “generalized” nodal quantity as defined in Eq. (22). If any 
boundary node 

IX does not resides the old spatial discretization 
nM , an appropriate projection 

is performed to find the closet point on the boundary of 
nM  for the subsequent remapping. We 

proceed to show that the above remap procedure is consistent in the sense that if the new 
discretization is identical to the old discretization, then all nodal quantities will remain 
unchanged after the remap.    
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Similarly, another consistent remap procedure is performed for the state valuable sg such as 
effective plastic strain, stress components and other internal valuables sampled at the integration 
point per integration cell.    
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where  

   
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

 
mp

j
gjkjgk B

1

1 XX                                                    (58) 

The matrices    kjjkB X  are computed on the set of integration points defined on the current 

configuration using the GMF method. The summation “ mp ” denotes the total number of 
integration points in the old discretization. It is known that the Advancing Front technique 
usually encounters difficulty when fronts merge. As a result, highly distorted tetrahedrons can 
occur in the generated mesh and greatly affects the accuracy of finite element solution. Since the 
construction of Lagrangian meshfree shape functions in this study does not rely on the finite 
element mesh, a distinct advantage of the proposed method in the adaptive procedure is its 
insensitivity to the existence of highly distorted tetrahedrons in the mesh.  

A noteworthy addition to the proposed method is its flexibility in reconstructing the 
neighboring nodal information without remeshing. In conventional finite element analysis, when 
the global remesher is unable to generate the desired discretization at time t=tn under certain 
geometrical conditions, the adaptive procedure is aborted and causes termination in the 
simulation. With the current method, the second way for adaptive procedure will step in and 
replaces the global remeshing step. Under this scenario, a meshfree nodal reconstruction step is 
taken which maintains the material quantities for all nodal and integration points in the 
Lagrangian setting but requires a new neighbor search. Using the chain rule, the calculation for 
the deformation gradient becomes 

nnn FFF 11                                                              (59) 

where 1nF is the decomposed deformation gradient due to the reconstruction of meshfree shape 

functions IΨ and is given by  
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       1 1 1, , , ,I n I n I n I I nt t t t      x x x X u x = x u x                       (61) 

Here, we define  nt,Xxx   to be a position vector on a new reference configuration x at time 

t=tn. Since this meshfree nodal reconstruction step does not involve remeshing, the remap 
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procedures are not needed. The updated deformation gradients together with the reconstructed 
shape functions and their derivatives are used to evaluate the discrete terms in Section 3.1. This 
flexibility in choosing different adaptive procedures provides an incentive for the use of adaptive 
meshfree Galerkin method in large deformation analysis of manufacturing problems. 

 
 

6. Numerical Simulation 
 

 
In this section, we consider a FSW problem as shown in Fig. 2. The light blue part is the tool, 
and the dark blue one is the work piece. The green part is rigid to provide the global constraints. 
The detail dimensions are shown in Fig. 3. The initial mesh of work piece is plotted in Fig. 4, 
which is going to be locally refined with respect to the contact surface curvature of the tool.  
 

         
 

Figure 2. FSW simulation model 
 

              
 

Figure 3. Dimensions of the tool and work piece 
 

 
 

Figure 4. Initial mesh of the work piece 
 
The tool has a conical shoulder surface to shape the material pushed out by two sequential stages 
of the FSW process:  
(1) Plunge stage: the rotating tool plunges into the work piece along vertical direction; 
(2) Traverse stage: the rotating tool travels along horizontal direction. 
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The material model of the work piece is assumed to be temperature dependant ideal plasticity. 
The material parameters are reported in table 1. The temperature dependant yield stresses of the 
work piece are listed in table 2. The melting point of work material is around 1080 o C . 
 
Table 1. Material parameters 

 
Density 

 3kg m  

Thermal (Isotropic) Young’s 
Modulus 

 GPa  

Poisson’s 
ratio 

Heat capacity 

 1 oJ kg C    

Thermal conductivity 

 1 1W m K    

Tool 7850 434 60 rigid 

Work piece 2700 875 175 70 0.3 

 
Table 2. Yield stresses of the work piece 

Temperature  o C  20 100 300 550 800 1080 

  y MPa  324 300 253 196 131 70 

 
The tool has a constant rotating speed 1125 rad s . The plunge displacement curve and traverse 
speed curve can be found in Fig. 5. 
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Figure 5. Plunge displacement and traverse speed curve of the tool 
 
The thermal mortar contact is defined between the tool and work piece with the Coulomb’s 
frictional coefficient 0.7. A constant temperature 20 o C  is applied to all the parts as initial 
condition. 

The normalized support size of the meshfree GMF approximation is 1.1. Since the density of 
nodal distribution varies dramatically throughout the domain due to local refinement, the actual 
nodal support size for every node is adjusted according to its surrounding nodal distribution to 
improve overall computational performance. The pressure smoothing scheme [Hu 2010] is 
applied to improve the smoothness and accuracy of stress calculation. By using local adaptivity, 
the integration cell size varies between 1mm and 8mm. The maximum time step is 0.5ms. The 
total processing time in this study is 1s.  
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The analysis was done by MPP double precision LS-DYNA® with 4 Xeon E5520 cores. The 
total computational time was about 17 hours. There were around 400 adaptive steps that 
gradually increased the number of integration cells from ~4,000 to ~130,000. 

 

   
 

(a) Plunge stage 
 

          
 

(b) Traverse stage 
Figure 6. Plastic deformation contour plots 

 
Figure 6 plots the deformation in two stages, where the top view is to the left and the central 
cross-section view is to the right. The material flow and free surface are well captured and 
represented by the local adaptive re-meshing. The red zone with large effective plastic strain 
clearly shows the stirring region during the welding process. Figure 7 shows the temperature 
results of both work piece and tool at three different processing steps. The model is plotted by 
cutting through the central cross-section to better provide the temperature distribution inside the 
parts. At the end of plunge stage at t=0.05s, the maximum temperature is around the front edge 
of the tool contact surface where the most heat sources from frictional contact are generated. In 
the traverse stage at t=0.60s, there is a “V” shape contour due to high gradient temperature 
distribution in the stirring zone, and the maximum temperature is close to the melting point. 
Figure 8 gives the von Mises stress results, where material softening can be clearly observed as 
the temperature increases from the plunge stage to traverse stage. The energy curve of the work 
piece and the tool contact force curve are plotted in Fig. 9. 
 

      
t=0.02s                            t=0.03s 

      
t=0.04s                            t=0.05s

      
t=0.15s                            t=0.22s 

 
t=0.60s 

t=0.05s 

t=0.60s 
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(a) t=0.05s                         (b) t=0.15s                                    (c) t=0.6s 

Figure 7. Temperature contour plots 
 

 
(a) t=0.05s                         (b) t=0.15s                                    (c) t=0.6s 

Figure 8. von Mises stress contour plots 
 

 
Figure 9. Energy curve of work piece and tool contact force curve 

Work piece 

Tool 
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Conclusion 

 
The thermo-mechanical complexity and severe material flow of friction stir welding process 
make analytical models incapable of capturing all the details needed for the satisfactory 
quantitative prediction of temperature and stress fields generated in the work piece. Via 
numerical modeling techniques, various finite element models of the friction stir welding process 
have been developed to help visualize and study the fundamental thermo-mechanical behavior of 
work piece and input parameters of the tool. However, there still exist great numerical challenges 
for the finite element simulation of friction stir welding process when the issues of handling 
severe mesh distortion, modeling contact and traction-free boundary conditions, imposing 
volume-constraint, performing accurate state variable remap and maintaining the quality of 
adaptive mesh are simultaneously presented in the model. This paper attempts to provide an 
alternative approach using a two-way adaptive meshfree Galerkin method to overcome those 
numerical challenges.  

In our approach, the coupled thermo-mechanical equations using a staggered explicit time 
integration scheme are modeled within a Lagrangian framework. This approach facilitates a 
direct incorporation of the displacement-based meshfree formulation with the adaptive 
procedures to circumvent the severe mesh distortion and volume-constraint problems. The 
concept of the two-way adaptive procedure is introduced to bypass the numerical difficulty 
caused by the abortion of adaptive mesh generation. Lagrangian meshfree convex approximation 
plays to key role in simplifying the boundary condition enforcement, suppressing tensile 
instability, minimizing the adaptivity-induced discretization sensitivity and offering an accurate 
and consistent projection operation in the remap procedure. The proposed method meets all the 
computational requirements suggested by Neto [Neto 2013] for FSW analysis including (1) 
Consideration of rotational boundary condition; (2) Consideration frictional contact; (3) Support 
for very high levels of deformation; (4) Support for elastic-plastic or elastic-viscoplastic material 
models; and (5) Support for complex geometry. 
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