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Abstract 
 

A study is conducted to determine the sensitivity of 2 topologically distinct metamodel types to variations in the 
experimental design brought about by sequential adaptive sampling strategies. The study focuses on examples 
encountered in crashworthiness design. Three sampling strategies are considered for updating the experimental 
designs, namely (i) a single stage approach, (ii) a sequential approach and (iii) a sequential approach, but with 
higher densities in local regions. The experimental design type is the Space Filling Method based on maximizing the 
minimum distance between any two design points within a subdomain. Feedforward Neural Networks (NN) and 
Radial Basis Function Networks (RBF) are compared with respect to their sensitivity when applied to these 
strategies. A large set of independent checkpoints, constructed using a Latin Hypercube Sampling method is used to 
evaluate the accuracy of the various strategies. Four examples are used in the evaluation, namely (i) simple two-
variable two-bar truss, (ii) the 21 variable Svanberg problem, (iii) a 7 variable full vehicle crash example and (iv) a 
11 variable knee impact crash example. The example, analyzed using LS-OPT® for metamodeling and LS-DYNA® 
for FE modeling, reveal the following: while expensive to construct, NN committees tend to be superior in 
predictability whereas the much cheaper RBF networks, can sometimes be highly sensitive to irregularity of 
experimental designs caused by subdomain updating. However, this conclusion cannot be extended to the crash 
problems tested, since the RBF networks performed consistently well for these examples. 

Introduction 

Along with experimental design, metamodels play a crucially important role in simulation-based 
optimization. Due to (i) the presence of noise in the response, (ii) the typical unavailability of 
analytical gradients and (iii) the requirement of obtaining a global surrogate model for design 
exploration, crashworthiness analysis requires the use of metamodeling techniques for design. 
FE models for crashworthiness analysis are highly complex and include highly non-linear 
phenomena such as contact, buckling, frictional sliding and material nonlinearity. Hence, 
nonlinear dynamic analysis is used and will always produce a displacement, velocity or 
acceleration response which is noisy to some degree. Factors such as mesh adaptivity, rounding 
and platform dependency are additional contributors to noisy behavior. To enable optimization 
or probabilistic analysis of the response, an accurate metamodel is imperative. After doing the 
initial expensive simulations, the subsequent metamodel becomes the surrogate and will 
represent the mechanical design for the remainder of the design process. 
 
The most basic approach to metamodeling, and the earliest to be used, is response surface 
methodology (RSM) [1]. RSM is polynomial-based, typically uses a full or fractional factorial or 
D-optimal experimental design as sampling scheme and relies only on linear regression to solve 
for the function coefficients. Because of the highly nonlinear nature of crash analysis, other 
metamodel types have been introduced to deal with the complexity of the response functions. 
Two well-established methods are Feedforward Neural Networks (FFNN) [2][3] and Radial 
Basis Function Networks (RBFN) [4][5]. These methods have some similarities, but differ 
greatly in their choice of basis functions and solution approach. While FFNN’s require nonlinear 
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regression, RBFN’s allow the regression process to be split into multiple levels, the innermost 
being linear while multiple outer line search loops deal with the nonlinearity induced by some of 
the parameters notably the spread and regularization factors and the topology (number of basis 
functions). 
 
Metamodel comparisons have been made by several researchers. Jin et al [6] investigated the 
effect of various sequential schemes (Entropy approach, the Integrated Mean Squared Error 
(IMSE) approach, and the Maximin Distance approach) on the relative merits of Kriging and 
RBF metamodels. They came to the conclusion that Kriging tended to be better for smooth 
functions whereas if the unknown function is irregular or unpredictable, RBF networks 
performed better. An earlier study by Jin et al [7] included a comparative study of Polynomial 
Regression, Multivariate Adaptive Regression Splines (MARS), Radial Basis Functions and 
Kriging. In this study it was concluded that RBF excels in most categories of degree of 
nonlinearity and problem scale. Hence the RBF Networks were also chosen as a suitable 
component of the current study. The RBF Networks metamodel type is a new addition to 
LSOPT® Version 3.3 . 
 
The design environment often requires the application of a non-standard, irregular experimental 
design. While an optimization run is ideally based on a single stage of runs, i.e. a series of runs 
based on a standard experimental design method the user is sometimes obliged to use a 
sequential method because of the flexibility it provides to run simulations until the metamodel 
converges. These sequential adaptive schemes can augment the set of designs locally or globally, 
possibly resulting in irregular experimental designs with higher point densities in a certain area 
or areas. Apart from sequential adaptive schemes, poor experimental designs may also arise 
when a number of runs fail due to finite element modeling deficiencies. In this case it is 
important to construct a surrogate with good predictive capability using the available points. 
 
This study investigates the robustness of the two afore-mentioned metamodeling types: FFNN’s 
and RBFN’s to variations in the experimental design method. A sequential adaptive domain 
reduction scheme [8] is used as a realistic irregular experimental design for detecting sensitivity 
of the sampling scheme. As reference cases, the Max-Min distance designs [9] are used. Five 
examples are used to investigate the relevant metamodel properties. Two of these are analytical 
namely (i) the two-bar truss, (ii) the 21 variable Svanberg problem. The crash examples are (iii) a 
7 variable full vehicle crash and vibration multidisciplinary example and (iv) an 11 variable knee 
impact example. 
 

Theory 

Feedforward Neural Networks 

 
Feedforward (FF) neural networks have a distinct layered topology. Each unit performs a biased 
weighted sum of their inputs and passes this value through a transfer (activation) function to 
produce the output. The outputs of each layer of neurons are the inputs to the next layer. In a 
feedforward network, the activation function of intermediate (’hidden’) layers is generally a 
sigmoidal function, network input and output layers being linear. Consider a FF network with K 
inputs, one hidden layer with H sigmoid units and a linear output unit. For a given input vector 
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Standard non-linear optimization techniques including a variety of gradient algorithms (the 
steepest descent, RPROP, Levenberg-Marquardt, etc.) can be applied to obtain the FF network’s 
weights and biases. The second-order Levenberg-Marquardt algorithm appears to be the fastest 
method for training moderate-sized FF neural networks (up to several hundred adjustable 
weights) [2]. However, when training larger networks, the first-order RPROP algorithm becomes 
preferable for computational reasons [10].  
 
Regularization: For FF networks, regularization may be done by controlling the number of 
network weights (’model selection’), by imposing penalties on the weights (’ridge regression’), 
or by various combinations of these strategies ([11], [12]). Model selection requires choosing the 
number of hidden units and, sometimes, the number of network hidden layers. Most 
straightforward is to search for an ’optimal’ network architecture that minimizes the PRESS 
(Prediction Sum of Squares computed using a leave-one-out approach). For FF networks, this 

procedure is usually too expensive and an approximate quantity: GCV = ( )21 PMSE ν− is used, 
where ν  is the effective number of model parameters. A common scheme is to loop over 1,2,... 
hidden units and finally select the network with the smallest GCV error. In any event, in order 
for the GCV measure to be applicable, the number of training points P should not be too small 
compared to the required network size M. 
 
Over-fitting: To prevent over-fitting, it is desirable to find neural solutions with the smallest 
number of parameters. In practice, however, networks with a very parsimonious number of 
weights are often hard to train. The addition of extra parameters (i.e. degrees of freedom) can aid 
convergence and decrease the chance of becoming stuck in local minima or on plateaus [13]. 
Weight decay regularization involves modifying the performance function F, which is normally 
chosen to be the mean sum of squares of the network errors on the training set MSE. When 
minimizing MSE, the weight estimates tend to be exaggerated. A penalty is imposed for this 
reason by adding a term that consists of the sum of squares of the network weights (see also (1)): 
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where M is the number of weights and P the number of points in the training set. 
 
Notice that network biases are usually excluded from the penalty term EW. Using the modified 
performance function F will cause the network to have smaller weights, and this will force the 
network response to be smoother and less likely to overfit thus eliminating the guesswork 
required in determining the optimum network size. A description of how to determine α and 
β can be found in [14].  
 
Neural networks have a natural variability for the following reasons [15]: 
 

1. Local behavior of the neural network training algorithms 
2. Uncertainty (noise) in the training data 

 
The neural network training error function usually has multiple local and global minima. With 
different initial weights, the training algorithm typically ends up in different (but usually almost 
equally good/bad) local minima. The larger the amount of noise in the data, the larger the 
difference between these NN solutions. In this study, NN committees consisting of a 
membership on 9 neural nets were used to find the average NN [2]. Each member of the 
committee is constructed by starting the nonlinear regression procedure at a different starting 

point of the weight values )0(
mW . 

 

Radial Basis Function Networks 

 
A radial basis function neural network has a distinct 3-layer topology. The input layer is linear 
(transparent). The hidden layer consists of non-linear radial units, each responding to only a local 
region of input space. The output layer performs a biased weighted sum of these units and 
creates an approximation of the input-output mapping over the entire space. The most common 
basis functions are Hardy’s multi-quadrics functions and the Gaussian function. These are given 
as: 
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(peaked at the center and descending outwards) with the property that 0→hg  as ∞→r . 

Parameter hσ  controls the smoothness properties of the RBF unit.  
 
For a given input vector ),...,( 1 Kxxx =  the output of RBF network with K inputs and a hidden 
layer with H basis function units is given by:  
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Notice that hidden layer parameters 

hkh WW ,...,1
 represent the center of hth radial unit, while 0hW  

corresponds to its deviation. Parameters 0W and HWW ,...,1 are the output layer's bias and weights, 
respectively. 
 
A key aspect of RBF networks, as distinct from feedforward neural networks, is that they can be 
interpreted in a way which allows the hidden layer parameters (i.e. the parameters governing the 
radial functions) to be determined by semi-empirical, unsupervised training techniques. 
Accordingly, although a radial basis function network may require more hidden units than a 
comparable feedforward network, RBF networks can be trained extremely quickly, orders of 
magnitude faster than FF networks. 
 

Sequential domain reduction 

 
The purpose of sequential domain reduction is to allow convergence of the solution to a 
prescribed tolerance. The SRSM (Sequential Response Surface Method) [8] uses a region of 
interest, a subspace of the design space, to determine an approximate optimum. A range is 
chosen for each variable to determine its initial size. A new region of interest centers on each 
successive optimum. Progress is made by moving the center of the region of interest as well as 
reducing its size. Figure 1 shows the possible adaptation of the subregion. The nominal reduction 
of the region of interest is 0.25 (i.e. the range of each variable reduces to 0.75 of its former 
range) for each iteration. However, heuristic rules dependent on the amount of oscillation and the 
proximity of the new optimal design with respect to the previous one are used to determine a 
reduction factor between 0 and 0.25. The experimental design is augmented within this new 
region of interest, maintaining the maximin distance with respect to all existing points as well as 
new points. The maximin distance is obtained using simulated annealing. 
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Figure 1: Adaptation of subregion in SRSM: (a) pure panning, (b) pure zooming and (c) a combination of 
panning and zooming 

 
The sequential sampling method without domain reduction simply adds new points to the full 
design space by using the criterion of maximizing the minimum distance between any of the new 
points as well as between new and existing points. 
 

Examples 

A number of examples are provided to compare the different metamodels. There are two 
analytical examples, the 3 variable 2-bar truss problem and the Svanberg 21 variable problem. 
The remaining three examples are: (i) a full vehicle crash and vibration analysis with 7 sizing 
variables and (ii) a knee impact analysis with 11 sizing and shape variables. Two metamodel 
types are compared: (i) Feedforward Neural Networks (NN) and (ii) Radial Basis Function 
Networks (RBF). Both 9- and single member committees are used for the NN’s and denoted NN-
9 and NN-1 respectively. The RBF networks use Hardy’s Multi-quadric basis functions. LS-
OPT®

 [14] was used to build the respective metamodels while LS-DYNA® [16] was used to 
conduct the crash and vibration simulations. 
  
The single stage global approximation is an approximation based on a single stage maximin 
experimental design constructed by maximizing the minimum distance between any two points. 
The sequential subdomain updating is conducted as follows: The first iteration uses a D-optimal 
experimental design with linear approximation. From the second iteration onwards, the region of 
interest is reduced to a sub-domain (see Reference [8]). This results in an increasingly dense 
sampling as the sub-domain continues to reduce in size. 10 Iterations are used for all the 
examples. The number of simulations per iteration is represented by the thumb rule 

1)1(5.1 ++n where n is the number of design variables. For the single stage method, the total 
number of points is the same as for the iterative method. This thumb rule ensures that the number 
of sampling points in the first iteration represents a slight oversampling for a linear 
approximation. 
 
The metamodel types and sampling schemes are compared by means of a large set of 
independent checkpoints constructed using the Latin Hypercube Sampling scheme. An RMS 
error value is computed for each function as follows: 
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Where P is the number of checkpoints, py  is the function value at the checkpoint and pŷ is the 

function value predicted using the metamodel. The reported RMSE values are also normalized 
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2-Bar truss with 3 variables 

The first problem is of a simple two-bar truss. A linear analysis is conducted using simple user 
defined formulas The height of the structure = 1. The force components are: Fx = +24.8kN, 
Fy=198.4kN. The criteria are weight and stress in each of the bars. Three design variables are 
chosen, namely the cross-sectional area of the bars and the base measurement between the 
supports. It should be noted that the StressL and StressR functions are highly nonlinear functions 
of the cross-sectional areas AreaL and AreaR respectively. 
 

 
 
 
The results are presented in tables Table 1 and Table 2.  Table 1 represents the RMSE while 
Table 2 represents the Maximum errors. The statistics are based on 1000 checkpoint simulations. 
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Figure 2: Two bar truss 
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 RMSE (% of mean) 

Sampling: Single Stage Sequential 
Sequential 
Subdomain 

Metamodel NN-9 NN-1 RBF NN-9 NN-1 RBF NN-9 NN-1 RBF 

Weight 0.0891 0.0985 0.522 0.0648 0.106 0.0966 0.356 0.332 1.12 

StressL 9.86 8.56 35.8 6.01 7.49 24.2 11.2 22.3 57.2 

StressR 8.46 9.24 43.6 8.04 5.89 42 17.2 22.6 86.3 

 

Table 1: 2-Bar truss. 70 Simulation points. RMSE of a set of 1000 LHS checkpoints as a percentage of the 
mean value for NN-9: Feedforward Neural Net with 9 member committee, NN-1: Feedforward Neural Net 
with 1 member, RBF: Radial Basis Function Network. Best fits are shown in bold. 

 
 

 Maximum error (% of mean) 

Sampling: Single Stage Sequential 
Sequential 
Subdomain 

Metamodel NN-9 NN-1 RBF NN-9 NN-1 RBF NN-9 NN-1 RBF 

Weight 0.774 0.763 3.54 0.506 0.641 0.651 1.68 2.19 5.34 

StressL 135 119 343 36.9 55.8 158 100 264 269 

StressR 108 115 390 79.2 57.4 344 110 129 439 

 

Table 2: 2-Bar truss. 70 Simulation points. Maximum error of 1000 LHS checkpoints as a percentage of the 
mean value for NN-9: Feedforward Neural Net with 9 member committee, NN-1: Feedforward Neural Net 
with 1 member, RBF: Radial Basis Function. Best fits are shown in bold. 

 
The most obvious and unexpected result for the two-bar truss is the poor performance of the 
RBF’s, even when using a single stage experimental design.  
 
 

Svanberg problem with 21 variables 

 
This example has 21 design variables and was proposed by Svanberg in 1995 [17]. The 
formulation is as follows: 
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Table 3 and Table 4 represent the results for the Svanberg problem. In contrast to the previous 
example, the RBF performs significantly better than the neural network. Table 3 represents the 
RMSE while Table 4 represents the Maximum errors. 
 
 
 

 RMSE (% of mean) 

Sampling: Single Stage Sequential 
Sequential 
Subdomain 

Metamodel NN-9 NN-1 RBF NN-9 NN-1 RBF NN-9 NN-1 RBF 

f 12.6 16.9 9.24 14.3 17.8 8.66 17.3 26.3 15.6 

g1 10.7 15.1 5.86 12.6 14.9 6.11 14.5 17 9.67 

 

Table 3: Svanberg problem: 340 Simulation points. RMS error of a set of 1000 LHS checkpoints as a 
percentage of the mean value for two types of experimental designs. NN-9: Feedforward Neural Net with 9 
member committee, NN-1: Feedforward Neural Net with 1 member, RBF: Radial Basis Function Network. 
Best fits are shown in bold 

 
 

 Maximum error (% of mean) 

Sampling: Single Stage Sequential 
Sequential 
Subdomain 

Metamodel NN-9 NN-1 RBF NN-9 NN-1 RBF NN-9 NN-1 RBF 

f 47.6 63.8 37.2 64.1 77.9 43.5 65.2 137 58.4 

g1 48.8 54 20.1 44.6 52.7 26.5 52.9 71.3 41.7 

 

Table 4: Svanberg problem: 340 Simulation points. Maximum error of a set of 1000 LHS checkpoints as a 
percentage of the mean value for two types of experimental designs. NN-9: Feedforward Neural Net with 9 
member committee, NN-1: Feedforward Neural Net with 1 member, RBF: Radial Basis Function Network 

 
In this example, the RBF’s perform better than the FFNN’s. The example also demonstrates the 
considerably better performance achieved when using committees, especially for subdomain 
updating. 
 
 

Vehicle crash and vibration (7 variables) 

 
The crashworthiness simulation considers a model containing approximately 30,000 elements of 
a National Highway Transportation and Safety Association (NHTSA) Ford Taurus vehicle [17] 
undergoing a full frontal impact. A modal analysis is performed on a so-called ‘body-in-white’ 
model containing approximately 18,000 elements. The crash model for the full vehicle is shown 
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in Figure 3 for the deformed (time = 90ms) state, and only the structural components affected by 
the design variables in Figure 4. The NVH model used to compute the first torsion vibrational 
mode is not shown here. Only body parts that are crucial to the vibrational mode shapes are 
retained in this model. The design variables are all thicknesses or gages of structural components 
of the vehicle parameterized directly in the LS-DYNA [16]  input file. Twelve parts are affected, 
comprising aprons, rails, shotguns, cradle rails and the cradle cross member (Figure 4). LS-
DYNA Version 971 [16] is used for both the crash and NVH simulations, in explicit and implicit 
modes respectively. 
 
 
 

 
Figure 3: Deformed crash model of Taurus (90ms) 

 
Figure 4: Parts containing thickness design variables 
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The response functions are defined as follows: 
 
 Maximum intrusion(x) 

Stage 1 pulse(x)  
Stage 2 pulse(x)  
Stage 3 pulse(x)  
Torsional mode frequency(x) 

 
with x = [rail_inner, rail_outer, cradle_rails, aprons, shotgun_inner, shotgun_outer, 
cradle_crossmember]T  
 
The three stage pulses are calculated from the SAE filtered (60Hz) acceleration a and 
displacement of a left rear sill node in the following fashion: 
 

 Stage i pulse = 
12

2

1

d

dd

xa
k

d

d

−
∫

; k = 0.5 for i = 1, 1.0 otherwise; 

 
with the limits (d1;d2) = (0;184); (184;334); (334;Max(displacement)) for i = 1,2,3 respectively, 
all displacement units in mm. The Stage 1 pulse is represented by a triangle with the peak value 
being the value used. 
 
Table 5 and Table 6 represent the RMS errors and Maximum errors respectively of the 
checkpoints. 300 Checkpoints are used on the metamodels built using 130 training points. 
 
 
 RMSE (% of mean) 

Sampling: Single Stage Sequential 
Sequential 
Subdomain 

Metamodel NN-9 NN-1 RBF NN-9 NN-1 RBF NN-9 NN-1 RBF 

Intrusion 0.680 0.735 0.729 0.796 0.890 0.902 1.14 1.7 0.963 

Pulse (Stage 1) 0.637 0.691 0.704 0.695 0.756 0.758 1.52 1.62 1.60 

Pulse (Stage 2) 1.31 1.46 1.44 1.38 1.82 1.40 2.33 4.52 2.21 

Pulse (Stage 3) 1.94 2.26 1.90 2.04 2.32 2.26 3.43 3.54 2.5 

Frequency (twisting 
mode) 

0.202 0.200 0.188 0.179 0.244 0.236 0.521 0.552 0.461 

 

Table 5: Taurus MDO problem: 130 Simulation points. RMS error of a set of 300 LHS checkpoints as a 
percentage of the mean value for two types of experimental designs. NN-9: Feedforward Neural Net with 9 
member committee, NN-1: Feedforward Neural Net with 1 member, RBF: Radial Basis Function Network. 
Best fits are shown in bold. 

 
 



Opitmization (1) 10th International LS-DYNA® Users Conference 

4-26 

 Maximum error (% of mean) 

Sampling: Single Stage Sequential 
Sequential 
Subdomain 

Metamodel NN-9 NN-1 RBF NN-9 NN-1 RBF NN-9 NN-1 RBF 

Intrusion 2.34 2.57 2.12 2.59 2.87 2.95 3.18 6.33 2.86 

Pulse (Stage 1) 1.67 1.78 2.66 3.72 3.96 2.43 4.99 4.52 4.75 

Pulse (Stage 2) 4.02 5.71 5.39 3.97 6.47 4.16 8.59 18.8 7.1 

Pulse (Stage 3) 6.44 7.95 5.93 5.78 6.61 6.34 9.93 12.7 6.78 

Frequency (twisting 
mode) 

0.905 0.861 0.755 0.943 1.03 0.981 1.76 1.66 1.61 

 

Table 6: Taurus MDO problem: 130 Simulation points. Maximum  error of a set of 300 LHS checkpoints as a 
percentage of the mean value for two types of experimental designs. NN-9: Feedforward Neural Net with 9 
member committee, NN-1: Feedforward Neural Net with 1 member, RBF: Radial Basis Function Network. 
Best fits are shown in bold. 

 
For this crash problem RBF networks generally perform the best, except for the sequential 
method where NN-9 is marginally better.  

Knee impact example (11 variables) 

 
Figure 5 shows the finite element model of a typical automotive instrument panel (IP) [19]. For 
model simplification and reduced per-iteration computational times, only the driver's side of the 
IP is used in the analysis as shown, and consists of around 25,000 shell elements. Also shown in 
Figure 5 are simplified knee forms which move in a direction as determined from prior physical 
tests. As shown in the figure, this system is composed of a knee bolster (steel, plastic or both) 
that also serves as a steering column cover with a styled surface, and two EA brackets (usually 
steel) attached to the cross vehicle IP structure. The brackets absorb a significant portion of the 
lower torso energy of the occupant by deforming appropriately. Sometimes, a steering column 
isolator (also known as a yoke) may be used as part of the knee bolster system to delay the wrap-
around of the knees around the steering column. The last three components are non-visible and 
hence their shape can be optimized.  The design variables are shown in Figure 6.  The simulation 
is carried out for a 40 ms duration by which time the knees have been brought to rest.  It may be 
mentioned here that the Bendix component test is used mainly for knee bolster system 
development; for certification purposes, a different physical test representative of the full vehicle 
is performed. Since the simulation used herein is at a subsystem level, the results reported here 
may be used mainly for illustration purposes. 
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Figure 5: Instrument panel with knee bolster system (highlighted) 

 
 

 
Figure 6: Eleven design variables of the knee bolster system 
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Table 7 represents the RMSE while Table 8 represents the Maximum checkpoint errors of 300 
checkpoints. 
 

 RMSE (% of mean) 

Sampling: Single Stage Sequential 
Sequential 
Subdomain 

Metamodel NN-9 NN-1 RBF NN-9 NN-1 RBF NN-9 NN-1 RBF 

Left knee force 6.15 7.02 6.94 5.56 6.67 7.02 10.1 47.5 9.11 

Right knee force 3.33 3.09 3.92 2.94 3.21 3.74 6.92 26.6 5.17 

Left Knee intrusion 2.3 2.38 2.85 2.14 2.18 2.58 3.88 33.7 4.48 

Right Knee intrusion 2.05 2.25 2.94 2.22 2.29 2.81 3.61 39.9 5.43 

Yoke displacement 36.4 54.7 29.7 26.4 27.6 32.2 64.0 142 35.7 

Kinetic Energy 18.0 21.7 12.1 12.0 15.0 12.4 14.9 21.7 13.4 

 

Table 7: Knee impact problem: 190 Simulation points. RMSE of a set of 300 LHS checkpoints as a percentage 
of the mean value for two types of experimental designs. NN-9: Feedforward Neural Net with 9 member 
committee, NN-1: Feedforward Neural Net with 1 member, RBF: Radial Basis Function Network. Best fits 
are shown in bold. 

 
 

 Maximum error (% of mean) 

Sampling: Single Stage Sequential 
Sequential 
Subdomain 

Metamodel NN-9 NN-1 RBF NN-9 NN-1 RBF NN-9 NN-1 RBF 

Left knee force 19.5 24.5 29.4 20.6 22.0 24.0 31.1 105 26.4 

Right knee force 9.93 10.4 12.4 9.77 10.7 10.3 29.6 46.7 18 

Left Knee intrusion 9.9 8.49 10.8 7.09 6.44 8.6 12.5 87.7 14.1 

Right Knee intrusion 8.15 8.13 11.4 8.39 8.8 10.5 11.0 63.7 15.8 

Yoke displacement 199 388 115 114 147 120 403 206 121 

Kinetic Energy 143 234 47.1 40.9 64.8 50.2 53.5 79.3 53.4 

 

 

Table 8: Knee impact problem: 190 Simulation points. Maximum  error of a set of 300 LHS checkpoints as a 
percentage of the mean value for two types of experimental designs. NN-9: Feedforward Neural Net with 9 
member committee, NN-1: Feedforward Neural Net with 1 member, RBF: Radial Basis Function Network. 
Best fits are shown in bold. 
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An obvious result is that the single member NN (NN-1) performs relatively poorly on the 
subdomain approach whereas the RBF and NN-9 perform consistently well. RBF does 
particularly well for the Subdomain method. 
 

Conclusions 

Except for the fact that single stage global sampling will – as expected – always give a more 
accurate metamodel, the comparative strengths of the metamodels are otherwise somewhat 
problem dependent.  
 
The NN-9 metamodel performs consistently well for all the examples and sampling strategies but 
is also the most expensive metamodel, having to rely on a non-linear regression algorithm for 
solution. Although it performs mostly better than NN-1, the single member model, the difference 
does not seem to be very large. Since the cost of building NN-9 is about 9 times that of building 
NN-1, the centering operation is very robust, but may not be justified. A glaring exception to this 
observation was the knee impact problem with subdomain reduction in which most of the 
responses deteriorated significantly when relying on a single net. 
 
For the sequential methods, both the RBF and NN-9 do well for the crash problems, but, 
exceptionally, RBF is significantly worse for the 2-Bar truss problem. Since the 2-Bar truss is a 
highly nonlinear problem, involving reciprocal functions, RBF methods may perform especially 
poorly on such problems when using an iterative scheme with subdomain updating.  
 
For the examples considered, there is no obvious degradation of accuracy for subdomain 
updating as a function of the number of variables. This is in spite of the fact that the reduction 
factor for each variable remains the same (about 0.25) irrespective of the number of design 
variables, thereby contributing to a greatly reduced volume fraction populated by new points for 
each new iteration. E.g the 21 variable Svanberg problem is less sensitive to the experimental 
design than the 3-variable 2-bar truss example. This may, of course, depend on the nature of the 
problem. 
 
Due to their linear property, the radial basis functions have a major speed advantage over Neural 
Networks, even when the latter method uses only one committee member. It is however of some 
concern that, for highly nonlinear (but smooth) functions, the RBF networks may perform rather 
poorly, affecting the error measures by almost an order of magnitude. This result is aggravated 
by the use of subdomain updating. Further investigation is needed regarding this issue. 
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