
8th International LS-DYNA Users Conference Material Technology 

 6-53 

Formability Modeling with LS-DYNA 
 

Torodd Berstad, Odd-Geir Lademo, Ketill O. Pedersen 
SINTEF Materials and Chemistry, NO-7465 Trondheim, Norway 

Odd S. Hopperstad 
Department of Structural Engineering, Norwegian University of Science and Technology, 

NO-7491 Trondheim, Norway 

 

Abstract 
 
This paper presents how the process of loss of stability, as described by the classical theory of Marciniak and 

Kuczynski, can be represented in non-linear finite element analyses with LS-DYNA. As will be seen, this is strongly 

dependent upon proper constitutive equations and parameters for the sheet material at hand. Of this reason two 

user-defined sub-routines for weakly and strongly textured aluminum alloys, respectively, have been implemented. 

Further, a non-local instability criterion has been implemented in order to detect incipient plastic instability. Next, 

some inhomogeneity must be introduced in the finite element model. In further analogy to the work of Marciniak and 

Kuczynski the inhomogeneity can be introduced either to the material properties or to the thickness.  In order to 

perform the calculations in an efficient way, an automated procedure – called an FLD-calculator – has been 

created. Finally, the FEM-based calculations are compared with analytical and experimental results. 

 
Introduction 

 
In a variety of applications there is a demand for optimized components made out of sheet 
materials or thin-walled extrusions, often requiring exploitation of the material to the verge of 
strain localization and material failure. Presently, and in the future, this calls upon skill-full use 
of non-linear finite element programs where the mentioned phenomena should be represented. 
Especially, robust design and production of light but crashworthy structural components in 
aluminum for the automotive industry are challenging tasks, involving development of alloys 
and manufacturing processes, structural design and crashworthiness analysis. Both recrystallized 
and non-recrystallized extruded aluminum alloys have typically strong crystallographic textures 
that lead to anisotropy in strength, plastic flow and ductility. 
 
Based upon the classical instability analysis of Marciniak and Kuczynski  [1], Barlat  [2] argue 
that accurate prediction of localized necking for biaxial (stretch-stretch) deformation states is 
very sensitive to the shape of the yield surface. Here, two yield criteria for metals with 
orthotropic anisotropy proposed by Barlat and Lian  [3] and Barlat et al.  [4] have been adopted in 
the constitutive models applied to formability analysis. The former yield criterion is adopted for 
alloys with weak texture, while the latter accounts for strong texture. The main ingredients of the 
elastoplastic constitutive models are the anisotropic yield criterion, associated flow rule, a non-
linear isotropic hardening rule and ductile fracture criteria (critical-thickness-strain and 
Cockcroft-Latham  [5] criteria). The two constitutive models for weakly and strongly textured 
materials have been implemented in LS-DYNA  [6] as user-subroutines. 
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Searching further inspiration from the classical instability analysis of Marciniak and Kuczynski, 
it is realized that – in ideal loading cases – inhomogeneity must be introduced in the finite 
element model. Here, it has been chosen to represent the inhomogeneity by a Gauss distributed 
stochastic variable. At present, either thickness or yield stress inhomogeneity can be represented. 
Further, to detect incipient plastic instability a non-local instability criterion has been 
implemented in LS-DYNA. In addition, a numerical tool for calculation of forming limit 
diagrams, called an FLD calculator, has been developed for use with LS-DYNA.  
 

Formability Modeling 
 
In their original paper, Marciniak and Kuczynski  [1] assume that an initial heterogeneity in the 
thickness of the material is present, and they assess the plastic instability phenomenon using the 
two-zone model shown in Figure 1. The heterogeneity is described in terms of a groove (b) 
inclined at an angle ω  to the minor principal stress direction. The thickness inside the groove is 

bt  while the thickness outside is at . The initial equivalent inhomogeneity factor is defined as the 

ratio 
 

 b
0

a 0

t
f

t

 
=  
 

 (1) 

 

A biaxial stress state is imposed on the homogeneous region (a) with a constant ratio of strains, 

a a 2 a1/ρ = ∆ε ∆ε , and the evolution of the strain rates in both regions (a) and (b) are examined. 

The plastic strain increment in the thickness direction has to be larger inside the groove than 
outside, b3 a3∆ε > ∆ε , to satisfy force equilibrium across the groove. Hence, the groove will grow 

in a certain manner depending on among other factors the magnitude of the initial heterogeneity. 
The limiting strains are achieved when the ratio b3 a3β ε / ε= ∆ ∆  approaches a critical value crβ  

corresponding to local instability, i.e. a non-local instability criterion that reads 
 

 b3 a3 crβ ε / ε β= ∆ ∆ =  (2) 

 
For a given strain path, the forming limit is obtained for the groove orientation ω  that leads to 
the minimum calculated limiting strains. For a material exhibiting planar isotropy and subject to 
a linear strain path, the critical groove orientation corresponds to an angle 0ω = o  in the whole 
stretching range (Barata da Rocha et al.  [7]).  
 
The original assumptions for the Marciniak-Kuczynski analysis were planar isotropy, Hill’s yield 
criterion (Hill  [8]), the associated flow rule, and power law strain-hardening. However, Barlat  [2] 
observed that different yield functions later have been used by various researchers in the analysis 
of Marciniak and Kuczynski, and he found that this research shows a tremendous effect of the 
yield surface shape on the predicted failure limits. Furthermore, Barlat explains the reason why 
the failure strains are so sensitive to the yield surface shape. This explanation is shortly repeated 
in the following. 
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Figure 1 A drawing of the model of Marciniak and Kuczynski for localized necking (after 
Barlat   [2]). 

 
In the case of planar isotropy, Sowerby and Duncan  [9] interpreted the process of localized 
necking by means of a yield locus as the one in Figure 2. Let us start considering the special case 
without any strain hardening. In such a case, all stress states involving plastic deformation 
correspond to points on the locus represented by the full line. Equilibrium requires the major 
principal stress to be larger inside the groove than outside it, b1 a1σ σ> , during the loading 

process. If the loading is proportional and ignoring work hardening, the stress state in region (a) 
is represented by point A during the entire straining process. Since b1 a1σ σ> , the stress in region 

(b) has to be represented by a point further along the 1σ -axis. Assume that it is represented by 

point 1B . As the strain increases, the relative thickness of the groove decreases. The major 

principal stress in the groove will then have to increase, and point 1B  will have to move further 

on along the 1σ -axis until it reaches the limiting point 0B .  As soon as point 1B  reaches 0B  

failure will occur. It is seen from Figure 2 that b1ε∆  becomes large and b2ε 0∆ →  as point 1B  

approaches 0B . From the assumption of plastic incompressibility it is known that 

b1 b2 b3ε ε ε 0∆ + ∆ + ∆ = , where b3ε∆  is the strain increment in the thickness direction in the 

groove. In conclusion, b3 b1ε ε∆ = −∆  attains large negative values, i.e. the thickness rapidly 

decreases, which in reality means that the material will fracture. Even if the material strain 
hardens the explanation above applies. However, the rotation of point 1B  towards 0B  will be 

slowed down, and the material will attain a higher limiting strain. This interpretation clearly 
demonstrates the tremendous importance of the shape of the yield surface. Consider for instance 
the difference in failure strain that would be predicted using the yield surfaces of von Mises and 
Tresca. In the former case, the stress in the limiting point of plane stress is approximately 13% 
higher than the stress at balanced biaxial stress. In the latter case, however, there is no stress 
reserve and localization will occur at an earlier stage. 
 
The discussion above is valid if the critical necking band is parallel to one of the principal stress 
directions, i.e. for materials with planar isotropy. In the case of planar anisotropy, the localized 
band is not necessarily parallel to one of the principal stress directions, and it is found that the 
shape of the yield surface in the shear stress direction is important (Barlat  [2]).  
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It is further concluded, based on the considerations above, that the hardening rule adopted in the 
constitutive model may significantly alter the failure predictions for the material. Tvergaard  [10] 
found that kinematic hardening gave far better agreement with experimental results than the 
assumption of isotropic hardening. In a second paper, Marciniak et al.  [11] took into account the 
effect of strain rate and planar anisotropy, and utilized the theory to predict the FLDs for copper, 
steel and an aluminum alloy. They found that good results were obtained for steel and copper, 
but not for the aluminum alloy.  

 

  

Figure 2 Interpretation of localized plastic flow (after Barlat  [2]). 

Thus, accurate representation of plastic instability in LS-DYNA requires proper constitutive 
equations and parameters for the sheet material at hand, a non-local instability criterion in the 
form of Eq. (2) and some inhomogeneity in geometry or material properties.  
 

Constitutive Model 

General 
In the following, the equations of a constitutive model for aluminum alloys are presented. The 
main ingredients of the model are a yield criterion, the associated flow rule and a nonlinear 
isotropic hardening rule. Small strains and rotations are assumed in the presentation, while in the 
numerical implementation large rotations are accounted for in the co-rotational shell elements 
(Belytschko et al.  [12]).  
 

The strain tensor ε  is decomposed into elastic and plastic parts (Lemaitre and Chaboche  [13]) 
 

 e p= +ε ε ε  (3) 
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where eε  and pε  are the elastic and plastic strain tensors, respectively. The relation between the 

stress tensor σ  and the elastic strain tensor eε  is defined as  

 

 e p: : ( )= = −σ C ε C ε ε  (4) 

 

where C  is the fourth order tensor of elastic constants.  

 

The yield function f , which defines the elastic domain in stress space, is expressed in the form  
 

 ( )Yf f ( ) σ R 0= − + ≤σ  (5) 

 

where Yσ  is the reference yield stress, R  is the strain hardening variable, while the convex 

function f  is defined in the next section. The strain hardening is given by  [13] 
 

 
2

Ri Ri
i 1

R Q (1 exp( C ))
=

= − − ε∑  (6) 

 

where ε  is the accumulated plastic strain and RiQ  and RiC  are strain hardening constants. 

 

The associated flow rule defines the evolution of the plastic strain tensor and the accumulated 
plastic strain as  [13] 
 

 
f fλ , ε λ

R
p ∂ ∂= = −

∂ ∂
ε

σ
& &&&  (7) 

 

where λ 0≥&  is the plastic multiplier. The loading/unloading conditions are written in the Kuhn-
Tucker form (Belytschko et al.  [12]) 

 

 f 0; 0; f 0≤ λ ≥ λ =& &  (8) 

 

These equations are used to define plastic loading and elastic unloading, while the consistency 

condition, f 0=& , is utilized to determine the plastic multiplier &λ  during a plastic process. 

Weak texture model (WTM) 
The anisotropy observed in sheet materials is often moderate, and an acceptable accuracy may in 
some cases be obtained using the simple, and numerically rather efficient, yield criterion of 
Barlat and Lian  [3]. The function f  is then defined as 
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and a, c, h, p and m are material parameters. As can be seen from the above equations, in this 
criterion there exists a coupling between the normal and shear stresses. Barlat  [4] was the first to 
point out the necessity of this coupling. 

Strong texture model (STM) 
Extruded aluminum alloys have a severe texture, and for these materials the anisotropic yield 
criterion Yld96 of Barlat and co-workers  [4] is one of the best suited proposed criteria. The 
function f  is then defined as 
 

 
m m mm

1 2 3 2 3 1 3 1 22f s s s s s s= α − + α − + α −  (12) 

 
where m  is a material constant, and 1s , 2s  and 3s  are the principal values of the deviatoric, 

equivalent isotropic stresses s , defined by the transformation :=s L σ . For plane stress states 
and with reference axes coincident with the axes of orthotropy, the matrix representation of the 
tensors in the transformation is 
 

 

x x2 3 3 2

y y3 3 1 1

z z2 1 1 2

xy xy6

s c c c c 0

s c c c c 01
, ,

s c c c c 03

s 0 0 0 3c

σ+ − −    
     σ− + −    = = =   σ− − +        σ    

s L σ  (13) 

 
where 1c , 2c , 3c  and 6c  are material parameters and zσ 0= . The principal stresses 1s , 2s  and 3s  

are determined by a procedure proposed in Yoon et al.  [14].  The z-axis is always a principal axis 
and can be assumed to coincide with the 3-axis, so that 3 zs s= . The remaining principal stresses 

and the angle θ  between the x-axis and the 1-axis are calculated from the well-known equations 
 

 
2

1 x y x y xy2
xy

2 x y

s s s s s 2s1
s , arctan

s 2 2 2 s s

 + − = ± + θ =     −   
 (14) 
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The coefficients 1α , 2α  and 3α  are finally given as 

 

 

2 2
1 x y

2 2
2 x y

2 2
3 z0 z1

cos sin

sin cos

cos 2 sin 2

α = α θ + α θ

α = α θ + α θ

α = α θ + α θ

 (15) 

 
where xα , yα , z0α 1≡ and z1α  are material parameters. Note, the more recent criterion Yld2000 

proposed by Barlat et al.  [15]  has several advantages compared to Yld96 and will be utilized in 
future work. 
 

Non-local Instability Criterion and the FLD Calculator 
 
In the finite element simulations of formability with LS-DYNA, we consider a square patch of 
shell elements as illustrated in Figure 3, in which the element thickness varies according to a 
Gaussian distribution. The initial mean thickness is 0t , while the initial width of the patch is 

denoted 0w . The patch is then subjected to a set of proportional strain paths, i.e. the strain ratio, 

2 1/ρ = ∆ε ∆ε , is constant within a simulation.  
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Figure 3  Concept of the non-local instability criterion and FEM-based FLD calculator 

 
The strains are defined from 
 

 1 2
1 2 3

0 0 0

w w t
ln , ln , ln

w w t
ε = ε = ε =  (16) 
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where 1w  and 2w  are the current widths of the patch, and t  is the current thickness. The non-

local instability criterion is defined in analogy to Eq. (2). First, the increment in thickness strain 

3∆ε  is calculated for all shell elements by 

 

 3

t

t

∆∆ε =  (17) 

 

where it is recalled that the current thickness will vary from element to element due to the initial 
thickness variation. Second, a non-local value of the increment in thickness strain 3

Ω∆ε  is 

computed for a patch of elements elΩ  within a user-defined radius, RΩ , of the actual element by 

 

 
el

3 3
el

1
dΩ

Ω

∆ε = ∆ε Ω
Ω ∫  (18) 

 

The radius RΩ  is typically several times the thickness of the sheet. Third, the ratio β  of the local 

and non-local increments in thickness strain is calculated for each shell element as 
  

 3

3
Ω

∆εβ =
∆ε

 (19) 

 
Finally, localized necking is assumed to occur when crβ ≥ β  in at least one element during 

several consecutive time steps, where crβ  is a user-defined critical value of the ratio β . It is 

necessary for the criterion to be fulfilled during several consecutive time steps to distinguish 
growing instabilities from stress waves and incipient, non-growing instabilities. The critical 
strain state 1 2 cr( , )ε ε  is based on the global deformation of the patch at the onset of localized 

necking, and is computed from Eq. (16). Figure 3 illustrate the calculation of the forming limit 
diagram.  
 
 
 

Validation 
 
First the FEM-based FLD calculator is assessed by comparing the calculations with results from 
an analytical FLD calculator that has been implemented in Excel/Visual Basic for determination 
of Forming Limit Diagrams according to the Marciniak-Kuczynski analysis. The assumptions for 
this tool are rigid plasticity, isotropic high-exponent yield criterion, associated flow rule and non-
linear isotropic hardening. It is noted that the isotropic high-exponent yield criterion is obtained 
from the Barlat-Lian yield criterion by taking all material constants (a, c, h, and p) equal to unity. 
Figure 4 compares results obtained with the classical and FEM-based FLD calculators. The 
material constants defining the stress-strain curve are as follows: 0 100MPaσ = , Q 100 MPa=  and 

C 10= . The exponent m of the yield criterion was chosen as 2 and 8, respectively. The initial 
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equivalent inhomogeneity factor 0f  in the classical formability analysis was taken as 0.995, 

while the coefficient of variation of the thickness CoV(t) in the FEM-based calculator was equal 
to 0.005. 
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Figure 4 Effect of yield criterion exponent on FLD prediction. (Analytic: f0 = 0.995. LS-

DYNA: CoV(t) = 0.005) 

 

There is fair agreement between the two methods when the von Mises yield criterion is adopted 
(m = 2), while the differences are more notable for the high-exponent yield criterion (m = 8). 
However, the two approaches are consistent in the sense that the strong influence of the yield 
surface is predicted. The advantage of the analytic approach is that it is very efficient compared 
to the FEM-based modeling technology, on the other hand, using FEM, physical inhomogeneity 
of any kind and general constitutive models can straightforwardly be represented.  
 
Figure 5 presents experimental and numerical FLD results for a 6082 alloy in solid solution state 
(forming condition). The material parameters have been identified based on three uniaxial tensile 
tests and a through thickness compression test as explained by Barlat et al.  [15] and Lademo et 
al.  [16]. Hardening parameters used in the FEM-based calculations are given in Table 1. 
Anisotropy parameters for the Weak and Strong Texture Models are given in Table 2 and Table 
3, respectively. The experimental formability results have been obtained using a formability test 
set-up similar to the one proposed by Marciniak and Kuczynski  [1] measuring the strains after 
onset of plastic instability by use of an applied grid pattern and an automated optical 
measurement system. The analytic FLD calculations have been performed with an initial 
inhomogeneity factor of 0.995. For the FEM-based calculations 50x50 elements and a coefficient 
of variation of the thickness, CoV(t), equal to 0.005 have been used.  
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Figure 5 Experimental and predicted Forming Limit Curves AA6082-W10 

 

Table 1 Hardening parameters for generalized Voce strain hardening rule AA6082-W10 

0σ  1Q [MPa]  1C  2Q [MPa]  2C  

36.4 88.5 27.1 - - 
 

Table 2 Anisotropy parameters for AA6082-W10 – Weak Texture Model (Yld89). 

a c h p m 
1.115 0.885 0.980 1.160 8 

 

Table 3 Anisotropy parameters for AA6082-W10 – Strong Texture Model (Yld96). 

c1 c2  c3  c6  αx  αy  α z0 α z1 m 

1.005 0.860 0.995 1.075 0.917 2.968 1.000 1.637 8 
 
The results of the analytic FLD calculator again show that the exponent of the yield criterion 
plays an important role and, further, that a value of 8 gives a reasonable prediction of the FLD. 
An exponent equal to 2, which corresponds to the von Mises yield criterion, is seen to be very 
non-conservative with respect to the occurrence of plastic instability in the first quadrant of the 
FLD. Thus, the von Mises yield criterion should not be used in this respect for aluminum alloys. 
As for the isotropic case, it is seen that the formability predictions with the FEM-based FLD 
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calculator gives somewhat higher formability predictions than the analytic one using the chosen 
inhomogeneity representation. 
 
For the chosen identification method, the formability prediction obtained using the WTM is close 
to the one got from the STM. If, however, biaxial stress points were obtained and that these were 
deviating much from the ones assumed here, the STM would probably be better at representing 
this additional information, and possibly the consequences with respect to formability 
predictions. Else, the judgment between these two models must be made with reference to the 
problem at hand. With respect to CPU time consumption, explicit solution of the problem is CPU 
intensive for both models, and a further activity should aim at using the implicit solver of LS-
DYNA. 
 

Conclusions 
 
This paper presents how the process of loss of stability, as described by the classical analysis of 
Marciniak and Kuczynski, can be represented in non-linear finite element analyses with LS-
DYNA. An automated procedure to calculate the formability of a material has been 
demonstrated. The calculations were based on two user-defined material models for weakly and 
strongly textured materials and a non-local instability criterion. The FEM-based formability 
predictions were in good agreement with experiments. 
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