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Abstract

An eight-node hexahedral solid element is incorporated into LS-DYNA to simulate thick
shell structure. The element formulations are derived in a corotational coordinate system
and the strain operator is calculated with a Taylor series expansion about the center of the
element. Special treatments are made on the dilatational strain component and shear strain
components to eliminate the volumetric and shear locking. The use of consistent tangential
stiffness and geometric stiffness greatly improves the convergence rate in implicit analysis.

INTRODUCTION

Large scale finite element analyses are extensively used in engineering designs and process con-
trols. For example, in automobile crashworthiness, hundreds of thousands of unknowns are
involved in the computer simulation models, and in metal forming processing, tests in the design
of new dies or new products are done by numerical computations instead of costly experiments.
The efficiency of the elements is of crucial importance to speed up the design processes and re-
duce the computational costs for these problems. Over the past ten years considerable progress
has been achieved in developing fast and reliable elements.

In the simulation of shell structures, Belytschko-Lin-Tsay (Belytschko, 1984a) and Hughes-
Liu (Hughes, 1981a and 1981b) shell elements are widely used. However, in some cases thick
shell elements are more suitable. For example, in the sheet metal forming with large curvature,
traditional thin shell elements cannot give satisfactory results. Also thin shell elements cannot
give us detailed strain information though the thickness. In LS-DYNA, the eight-node solid
thick shell element is still based on the Hughes-Liu and Belytschko-Lin-Tsay shells (Hallquist,
1998). A new eight-node solid element based on Liu, 1985, 1994 and 1998 is incorporated into
LS-DYNA, intended for thick shell simulation. The strain operator of this element is derived
from a Taylor series expansion and special treatments on strain components are utilized to avoid
volumetric and shear locking.

The organization of this paper is as follows. The element formulations are described in the next
section. Several numerical problems are studied in the third section, followed by the conclusions.

ELEMENT FORMULATIONS

Strain Operator
The new element is based on the eight-node hexahedral element proposed and enhanced by Liu,
1985, 1994, 1998. For an eight-node hexahedral element, the spatial coordinates,xi, and the
velocity components,vi, in the element are approximated in terms of nodal values,xia andvia,
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by

xi =
8X

a=1

Na(�; �; �)xia; (1)

vi =
8X

a=1

Na(�; �; �)via; i = 1; 2; 3 (2)

where the trilinear shape functions are expressed as

Na(�; �; �) =
1

8
(1 + �a�)(1 + �a�)(1 + �a�) (3)

and the subscriptsi anda denote coordinate components ranging from one to three and the
element nodal numbers ranging from one to eight, respectively. The referential coordinates�, �
and� of nodea are denoted by�a, �a and�a, respectively.

The strain rate (or rate of deformation),_", is composed of six components,

_"t = [ "xx "yy "zz "xy "yz "zx ] (4)

and is related to the nodal velocities by a strain operator,B,

_" = B(�; �; �)v; (5)

where
vt = [ vx1 vy1 vz1 � � � vx8 vy8 vz8 ]; (6)

B =

2
6666664

Bxx

Byy

Bzz

Bxy

Byz

Bzx

3
7777775
=

2
6666664

B1(1) 0 0 � � � B1(8) 0 0
0 B2(1) 0 � � � 0 B2(8) 0
0 0 B3(1) � � � 0 0 B3(8)

B2(1) B1(1) 0 � � � B2(8) B1(8) 0
0 B3(1) B2(1) � � � 0 B3(8) B2(8)

B3(1) 0 B1(1) � � � B3(8) 0 B1(8)

3
7777775

(7)

andB1,B2 andB3 are gradient vectors,2
4 B1

B2

B3

3
5 =

2
4 N;x(�; �; �)
N;y(�; �; �)
N;z(�; �; �)

3
5 : (8)

Unlike standard solid element where the strain operator is computed by differentiating the shape
functions, the strain operator for this new element is expanded in a Taylor series about the ele-
ment center up to bilinear terms as follows (Liu, 1994, 1998),

B(�; �; �) = B(0) +B;�(0) � +B;�(0) � +B;�(0) �

+ 2
�
B;��(0) �� +B;��(0) �� +B;��(0) ��

�
: (9)

The first term on the right-hand side of the above equation (9) corresponds to the constant strain
rates evaluated at the central point and the remaining terms are linear and bilinear strain rate
terms.
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Let

xt1 = xt =
�
x1 x2 x3 x4 x5 x6 x7 x8

�
; (10)

xt2 = yt =
�
y1 y2 y3 y4 y5 y6 y7 y8

�
; (11)

xt3 = zt =
�
z1 z2 z3 z4 z5 z6 z7 z8

�
; (12)

�t =
�
�1 1 1 �1 �1 1 1 �1

�
; (13)

�t =
�
�1 �1 1 1 �1 �1 1 1

�
; (14)

�t =
�
�1 �1 �1 �1 1 1 1 1

�
; (15)

the Jacobian matrix at the center of the element can be evaluated as

J(0) = [Jij ] =
1

8

2
4 �tx �ty �tz

�tx �ty �tz

�tx �ty �tz

3
5 ; (16)

the determinant of the Jacobian matrix is denoted byj0 and the inverse matrix ofJ(0) is denoted
byD

D = [Dij ] = J�1(0): (17)

The gradient vectors and their derivatives with respect to the natural coordinates at the center of
the element are given as follows,

b1 = N;x(0) =
1

8
[D11� +D12� +D13�] ; (18)

b2 = N;y(0) =
1

8
[D21� +D22� +D23�] ; (19)

b3 = N;z(0) =
1

8
[D31� +D32� +D33�] : (20)

b1;� = N;x�(0) =
1

8
[D121 +D132] ; (21)

b2;� = N;y�(0) =
1

8
[D221 +D232] ; (22)

b3;� = N;z�(0) =
1

8
[D321 +D332] ; (23)

b1;� = N;x�(0) =
1

8
[D111 +D133] ; (24)

b2;� = N;y�(0) =
1

8
[D211 +D233] ; (25)

b3;� = N;z�(0) =
1

8
[D311 +D333] ; (26)

b1;� = N;x�(0) =
1

8
[D112 +D123] ; (27)

b2;� = N;y�(0) =
1

8
[D212 +D223] ; (28)

b3;� = N;z�(0) =
1

8
[D312 +D323] ; (29)

b1;�� = N;x��(0) =
1

8

�
D134 �

�
pt1xi

�
bi;� �

�
rt1xi

�
bi;�

�
; (30)

b2;�� = N;y��(0) =
1

8

�
D234 �

�
pt2xi

�
bi;� �

�
rt2xi

�
bi;�

�
; (31)
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b3;�� = N;z��(0) =
1

8

�
D334 �

�
pt3xi

�
bi;� �

�
rt3xi

�
bi;�

�
; (32)

b1;�� = N;x��(0) =
1

8

�
D114 �

�
qt1xi

�
bi;� �

�
pt1xi

�
bi;�

�
; (33)

b2;�� = N;y��(0) =
1

8

�
D214 �

�
qt2xi

�
bi;� �

�
pt2xi

�
bi;�

�
; (34)

b3;�� = N;z��(0) =
1

8

�
D314 �

�
qt3xi

�
bi;� �

�
pt3xi

�
bi;�

�
; (35)

b1;�� = N;x��(0) =
1

8

�
D124 �

�
rt1xi

�
bi;� �

�
qt1xi

�
bi;�

�
; (36)

b2;�� = N;y��(0) =
1

8

�
D224 �

�
rt2xi

�
bi;� �

�
qt2xi

�
bi;�
�
; (37)

b3;�� = N;z��(0) =
1

8

�
D324 �

�
rt3xi

�
bi;� �

�
qt3xi

�
bi;�
�
; (38)

where

pi = Di1h1 +Di3h3; (39)

qi = Di1h2 +Di2h3; (40)

ri = Di2h1 +Di3h2; (41)

� = h� �
�
ht�xi

�
bi; (42)

and

ht1 = [ 1 �1 1 �1 1 �1 1 �1 ]; (43)

ht2 = [ 1 �1 �1 1 �1 1 1 �1 ]; (44)

ht3 = [ 1 1 �1 �1 �1 �1 1 1 ]; (45)

ht4 = [�1 1 �1 1 1 �1 1 �1 ]: (46)

In the above equationsh1 is the��-hourglass vector,h2 the ��-hourglass vector,h3 the ��-
hourglass vector andh4 the���-hourglass vector. They are the zero energy-deformation modes
associated with the one-point-quadrature element which result in a non-constant strain field in
the element (Flanagan, 1981, Belytschko, 1984 and Liu, 1984). The� in equations (21)–(38)
are the stabilization vectors. They are orthogonal to the linear displacement field and provide a
consistent stabilization for the element.

The strain operators,B(�; �; �), can be decomposed into two parts, the dilatational part,

B
dil
(�; �; �), and the deviatoric part,B

dev
(�; �; �), both of which can be expanded about the

element center as in equation (9)

B
dil
(�; �; �) = B

dil
(0) +B

dil

;� (0) � +B
dil

;� (0) � +B
dil

;� (0) �

+ 2
�
B

dil

;��(0) �� +B
dil

;��(0) �� +B
dil

;��(0) ��
�
; (47)

B
dev

(�; �; �) = B
dev

(0) +B
dev
;� (0) � +B

dev
;� (0) � +B

dev
;� (0) �

+ 2
�
B

dev

;�� (0) �� +B
dev

;�� (0) �� +B
dev

;�� (0) ��
�
: (48)

To avoid volumetric locking, the dilatational part of the strain operators is evaluated only at one
quadrature point, the center of the element, i.e., they are constant terms

B
dil
(�; �; �) = B

dil
(0): (49)
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To remove shear locking, the deviatoric strain submatrices can be written in an orthogonal coro-
tational coordinate system rotating with the element as

B
dev
xx (�; �; �) = B

dev
xx (0) +B

dev
xx;�(0) � +B

dev
xx;�(0) � +B

dev
xx;�(0) �

+ 2
�
B

dev

xx;��(0) �� +B
dev

xx;��(0) �� +B
dev

xx;��(0) ��
�
; (50)

B
dev
yy (�; �; �) = B

dev
yy (0) +B

dev
yy;�(0) � +B

dev
yy;�(0) � +B

dev
yy;�(0) �

+ 2
�
B

dev

yy;��(0) �� +B
dev

yy;��(0) �� +B
dev

yy;��(0) ��
�
; (51)

B
dev
zz (�; �; �) = B

dev
zz (0) +B

dev
zz;�(0) � +B

dev
zz;�(0) � +B

dev
zz;�(0) �

+ 2
�
B

dev

zz;��(0) �� +B
dev

zz;��(0) �� +B
dev

zz;��(0) ��
�
; (52)

B
dev

xy (�; �; �) = B
dev

xy (0) +B
dev

xy;�(0) �; (53)

B
dev
yz (�; �; �) = B

dev
yz (0) +B

dev
yz;�(0) �; (54)

B
dev

zx (�; �; �) = B
dev

zx (0) +B
dev

zx;�(0) �: (55)

Here, only one linear term is left for shear strain components such that the modes causing shear
locking are removed. The normal strain components keep all non-constant terms given in equa-
tion (48).

Summation of equation (49) and equations (50)–(55) yields the following strain submatrices
which can eliminate the shear and volumetric locking:

Bxx(�; �; �) = Bxx(0) +B
dev
xx;�(0) � +B

dev
xx;�(0) � +B

dev
xx;�(0) �

+ 2
�
B

dev

xx;��(0) �� +B
dev

xx;��(0) �� +B
dev

xx;��(0) ��
�
; (56)

Byy(�; �; �) = Byy(0) +B
dev
yy;�(0) � +B

dev
yy;�(0) � +B

dev
yy;�(0) �

+ 2
�
B

dev

yy;��(0) �� +B
dev

yy;��(0) �� +B
dev

yy;��(0) ��
�
; (57)

Bzz(�; �; �) = Bzz(0) +B
dev
zz;�(0) � +B

dev
zz;�(0) � +B

dev
zz;�(0) �

+ 2
�
B

dev

zz;��(0) �� +B
dev

zz;��(0) �� +B
dev

zz;��(0) ��
�
; (58)

Bxy(�; �; �) = Bxy(0) +B
dev

xy;�(0) �; (59)

Byz(�; �; �) = Byz(0) +B
dev
yz;�(0) �; (60)

Bzx(�; �; �) = Bzx(0) +B
dev

zx;�(0) �: (61)

It is noted that the elements developed above can not pass the patch test if the elements are
skewed. To remedy this drawback, the gradient vectors defined in (18)–(20) are replaced by the
uniform gradient matrices, proposed by Flanaga, 1981,2

4 ~b1
~b2
~b3

3
5 =

1

Ve

Z

e

2
4 B1(�; �; �)
B2(�; �; �)
B3(�; �; �)

3
5 dV; (62)

whereVe is the element volume and the stabilization vectors are redefined as

~� = h� �
�
ht�xi

�
~bi: (63)
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ê2
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Figure 1: Definition of corotational coordinate system

The element using the strain submatrices (56)-(61) and uniform gradient matrices (62) with four
point quadrature scheme is called HEXDS element.

Corotational Coordinate System
In elements for shell/plate structure simulations, the elimination of the shear locking depends
on the proper treatment of the shear strain. It is necessary to attach a local coordinate system
to the element so that the strain tensor in this local system is relevant for the treatment. The
corotational coordinate system determined here is one of the most convenient ways to define
such a local system.

A corotational coordinate system is defined as a Cartesian coordinate system which rotates with
the element. Letfxa; ya; zag denote the current nodal spatial coordinates in the global system.
For each quadrature point with natural coordinates(�; �; �), we can have two tangent directions
on the midsurface(� = 0) within the element (see Fig. 1)

g1 =
@x

@�
=

�
@x

@�

@y

@�

@z

@�

�
=
�
Na;�xa Na;�ya Na;�za

�
(�;�;0)

; (64)

g2 =
@x

@�
=

�
@x

@�

@y

@�

@z

@�

�
=
�
Na;�xa Na;�ya Na;�za

�
(�;�;0)

: (65)

The unit vector̂e1 of the corotational coordinate system is defined as the bisector of the angle
intersected by these two tangent vectorsg1 andg2; the unit vector̂e3 is perpendicular to the
midsurface and the other unit vector is determined byê1 andê3, i.e.,

ê1 =

�
g1

jg1j
+

g2

jg2j

�,���� g1jg1j
+

g2

jg2j

���� ; (66)

ê3 =
g1 � g2

jg1 � g2j
; (67)

ê2 = ê3 � ê1; (68)

which lead to the transformation matrix

R =

2
4 ê1
ê2
ê3

3
5 : (69)
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Stress and Strain Measures
Since the corotational coordinate system rotates with the configuration, the stress defined in this
corotational system does not change with the rotation or translation of the material body and is
thus objective. Therefore, we use the Cauchy stress in the corotational coordinate system, called
the corotational Cauchy stress, as our stress measure.

The rate of deformation (or velocity strain tensor), also defined in the corotational coordinate
system, is used as the measure of the strain rate,

_" = d̂ =
1

2

"
@v̂def

@x̂
+

�
@v̂def

@x̂

�t
#
; (70)

wherev̂def is the deformation part of the velocity in the corotational systemx̂. If the initial
strain"̂(X; 0) is given, the strain tensor can be expressed as,

"̂(X; t) = "̂(X; 0) +

Z t

0

d̂(X; �) d�: (71)

The strain increment is then given by the mid-point integration of the velocity strain tensor,

�"̂ =

Z tn+1

tn

d̂ d�
:
=

1

2

2
4@�ûdef
@x̂n+ 1

2

+

 
@�ûdef

@x̂n+ 1
2

!t
3
5 ; (72)

where�ûdef is the deformation part of the displacement increment in the corotational system
x̂n+ 1

2
referred to the mid-point configuration.

Corotational Stress and Strain Updates
For stress and strain updates, we assume that all variables at the previous time steptn are known.
Since the stress and strain measures defined in the earlier section are objective in the corotational
system, we only need to calculate the strain increment from the displacement field within the time
increment [tn, tn+1]. The stress is then updated by using the radial return algorithm.

All the kinematical quantities must be computed from the last time step configuration,
n, at
t = tn and the current configuration,
n+1, at t = tn+1 since these are the only available
data. Denoting the spatial coordinates of these two configurations asxn andxn+1 in the fixed
global Cartesian coordinate systemOx, as shown in Fig. 2, the coordinates in the corresponding
corotational Cartesian coordinate systems,Ox̂n andOx̂n+1, can be obtained by the following
transformation rules:

x̂n = Rnxn; (73)

x̂n+1 = Rn+1xn+1; (74)

whereRn andRn+1 are the orthogonal transformation matrices which rotate the global coordi-
nate system to the corresponding corotational coordinate systems, respectively.

Since the strain increment is referred to the configuration att = tn+ 1
2
, by assuming the velocities

within the time increment [tn, tn+1] are constant, we have

xn+ 1
2
=

1

2
(xn + xn+1) ; (75)

and the transformation to the corotational system associated with this mid-point configuration,

n+ 1

2
, is given by

x̂n+ 1
2
= Rn+ 1

2
xn+ 1

2
: (76)
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Ω

Ω

2
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^

^
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n+1

Ωn+-

n+-

1

2
1

Figure 2: Configurations at timestn, tn+ 1
2

andtn+1

Similar to polar decomposition, an incremental deformation can be separated into the summa-
tion of a pure deformation and a pure rotation (Belytschko, 1973). Letting�u indicate the
displacement increment within the time increment [tn, tn+1], we write

�u = �udef +�urot; (77)

where�udef and�urot are, respectively, the deformation part and the pure rotation part of the
displacement increment in the global coordinate system. The deformation part also includes the
translation displacements which cause no strains.

In order to obtain the deformation part of the displacement increment referred to the configura-
tion att = tn+ 1

2
, we need to find the rigid rotation from
n to
n+1 provided that the mid-point

configuration,
n+ 1
2
, is held still. Defining two virtual configurations,
0

n and
0

n+1, by rotating
the element bodies
n and
n+1 into the corotational systemOx̂n+ 1

2
(Fig. 3) and denotinĝx0n

andx̂0n+1 as the coordinates of
0

n and
0

n+1 in the corotational systemOx̂n+ 1
2
, we have

x̂0n = x̂n; x̂0n+1 = x̂n+1: (78)

We can see that from
n to
0

n and from
0

n+1 to
n+1, the body experiences two rigid rotations
and the rotation displacements are given by

�urot1 = x0n � xn = Rt
n+ 1

2

x̂0n � xn = Rt
n+ 1

2

x̂n � xn; (79)

�urot2 = xn+1 � x0n+1 = xn+1 �Rt
n+ 1

2

x̂0n+1 = xn+1 �Rt
n+ 1

2

x̂n+1: (80)

Thus the total rotation displacement increment can be expressed as

�urot = �urot1 +�urot2 = xn+1 � xn �Rt
n+ 1

2

(x̂n+1 � x̂n)

= �u�Rt
n+ 1

2

(x̂n+1 � x̂n) : (81)
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Figure 3: Separation of the displacement increment

Then the deformation part of the displacement increment referred to the configuration
n+ 1
2

is

�udef = �u��urot = Rt
n+ 1

2

(x̂n+1 � x̂n) : (82)

Therefore, the deformation displacement increment in the corotational coordinate systemOx̂n+ 1
2

is obtained as
�ûdef = Rn+ 1

2
�udef = x̂n+1 � x̂n: (83)

Once the strain increment is obtained by (72), the stress increment, also referred to the mid-point
configuration
n+ 1

2
, can be calculated with the radial return algorithm. The total strain and

stress can then be updated as

"̂n+1 = "̂n +�"̂; (84)

�̂n+1 = �̂n +��̂: (85)

Note that the resultant stress and strain tensors are both referred to the current configuration and
defined in the current corotational coordinate system. By using the tensor transformation rule
we can have the strain and stress components in the global coordinate system.

Tangent Stiffness Matrix and Nodal Force Vectors
From the Hu-Washizu variational principle, at both�th and(� + 1)th iteration, we haveZ


̂�
Æ"̂�ij �̂

�
ij dV = Æ�̂�ext; (86)

Z

̂�+1

Æ"̂�+1
ij �̂�+1

ij dV = Æ�̂�+1
ext ; (87)

whereÆ�̂ext is the virtual work done by the external forces. Note that both equations are written
in the corotational coordinate system defined in the�th iterative configuration given byx�n+1.
The variables in this section are within the time step [tn, tn+1] and superscripts indicate the
number of iterations.
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Assuming that all external forces are deformation-independent, linearization of (87) gives (Liu,
1992) Z


̂�
Æû�i;jĈ

�
ijkl�ûk;l dV +

Z

̂�

Æû�i;j T̂
�
ijkl�ûk;l dV = Æ�̂�+1

ext � Æ�̂�ext; (88)

where the Green-Naghdi rate of Cauchy stress tensor is used, i.e.,

T̂ �
ijkl = Æik�̂

�
jl: (89)

The first term on the left hand side of (88) denotes the material response since it is due to
pure deformation or stretching; the second term is an initial stress part resulting from finite
deformation effect.

Taking account of the residual of the previous iteration, equation (87) can be approximated asZ

̂�

Æû�i;j

�
Ĉ�
ijkl + T̂ �

ijkl

�
�ûk;l dV = Æ�̂�+1

ext �

Z

̂�

Æ"̂�ij �̂
�
ij dV: (90)

If the strain and stress vectors are defined as

"t =
�
"x "y "z 2"xy 2"yz 2"zx 2!xy 2!yz 2!zx

�
; (91)

�t =
�
�x �y �z �xy �yz �zx

�
; (92)

we can rewrite (90) asZ

̂�

Æ"̂�i

�
Ĉ�
ij + T̂ �

ij

�
Æ"̂j dV = Æ�̂�+1

ext �

Z

̂�

Æ"̂�i �̂
�
j dV; (93)

whereĈ�
ij is the consistent tangent modulus tensor corresponding to pure deformation (see Sec-

tion 3.2.3) but expanded to a 9 by 9 matrix;T̂ �
ij is the geometric stiffness matrix which is given

as follows (Liu (1992)):

T =

2
666666666666664

�1 0 0 �4
2 0 �6

2
�4
2 0 ��6

2

�2 0 �4
2

�5
2 0 ��4

2
�5
2 0

�3 0 �5
2

�6
2 0 ��5

2
�6
2

�1+�2
4

�6
4

�5
4

�2��1
4

�6
4 ��5

4
�2+�3

4
�4
4 ��6

4
�3��2

4
�4
4

symm: �1+�3
4

�5
4 ��4

4
�1��3

4
�1+�2

4 ��6
4 ��5

4
�2+�3

4 ��4
4

�3+�1
4

3
777777777777775

: (94)

By interpolation

�u = N�d; Æu =NÆd; (95)

�" = B�d; Æ" = BÆd; (96)

whereN andB are, respectively, the shape functions and strain operators defined in Section 2.
This leads to a set of equations

K̂��d̂ = r̂�+1 = f̂�+1
ext � f̂�int; (97)
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where the tangent stiffness matrix,K̂� , and the internal nodal force vector,f̂�int, are

K̂� =

Z

̂�
B̂

t �
Ĉ� + T̂�

�
B̂ dV; (98)

f̂�int =

Z

̂�
B̂

t

�̂� dV: (99)

The tangent stiffness and nodal force are transformed into the global coordinate system tensori-
ally as

K� = R�tK̂�R� ; (100)

r�+1 = R�tr̂�int; (101)

whereR� is the transformation matrix of the corotational system defined byx�n+1. Finally we
get a set of linear algebraic equations

K��d�+1 = r�+1: (102)

NUMERICAL EXAMPLES

To investigate the performance of the element introduced in this paper, a variety of problems in-
cluding linear elastic and nonlinear elastic-plastic/large deformation problems are studied. Since
the element is developed to avoid locking, the applicability to problems of thin structures is
studied by solving the standard test problems including pinched cylinder and Scordelis-Lo roof,
which are proposed by MacNeal, 1985 and Belytschko, 1984b. Also a sheet metal forming
problem is solved to test and demonstrate the effectiveness and efficiency of this element.

Timoshenko Cantilever Beam
The first problem is a linear, elastic cantilever beam with a load at its end as shown in Fig. 4,
whereM andP at the left end of the cantilever are reactions at the support. The analytical
solution from Timoshenko, 1970 is

ux(x; y) =
�Py

6EI
[(6L� 3x)x+ (2 + �)(y2 �

1

4
D2)]; (103)

uy(x; y) =
P

6EI
[3�y2(L� x) +

1

4
(4 + 5�)D2x+ (3L� x)x2]; (104)

where

I =
1

12
D3;

E =

�
E;
E=(1� �2);

� =

�
�; for plane stress;
�=(1� �); for plane strain:

The displacements at the support end,x = 0, � 1
2D � y � 1

2D are nonzero except at the top,
bottom and midline (as shown in Fig. 5). Reaction forces are applied at the support based on the
stresses corresponding to the displacement field atx = 0, which are

�xx = �
Py

I
(L� x); �yy = 0; �xy =

P

2I
(
1

4
D2 � y2): (105)

The distribution of the applied load to the nodes atx = L is also obtained from the closed-form
stress fields.
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Figure 5: Top half of antisymmetric beam mesh

The parameters for the cantilever beam are:L = 1:0, D = 0:02, P = 2:0, E = 1 � 107; and
two values of Poisson’s ratio: (1)� = 0:25, (2) � = 0:4999.

Since the problem is antisymmetric, only the top half of the beam is modeled. Plane strain
conditions are assumed in thez-direction and only one layer of elements is used in this direction.
Both regular mesh and skewed mesh are tested for this problem.

Normalized vertical displacements at point A for each case are given in Tables 1. Tables 1a
and 1b show the normalized displacement at point A for the regular mesh. There is no shear or
volumetric locking for this element. For the skewed mesh, with the skewed angle increased, we
need more elements to get more accurate solution (Table 1c).

Pinched Cylinder
Figure 6 shows a pinched cylinder subjected to a pair of concentrated loads. Two cases are
studied in this example. In the first case, both ends of the cylinder are assumed to be free. In
the second case, both ends of the cylinder are covered with rigid diaphragms so that only the
displacement in the axial direction is allowed at the ends. The parameters for the first case
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Table 1: Normalized displacement at point A of cantilever beam

(a)� = 0:25, regular mesh
analytical solutionwA = 9:3777� 10�2

Mesh 4� 1� 1 8� 1� 1 8� 2� 1
HEXDS 1.132 1.142 1.029

(b) � = 0:4999, regular mesh
analytical solutionwA = 7:5044� 10�2

Mesh 4� 1� 1 8� 1� 1 8� 2� 1
HEXDS 1.182 1.197 1.039

(c) � = 0:25, skewed mesh
� 1Æ 5Æ 10Æ

4� 1� 1 1.078 0.580 0.317
8� 1� 1 1.136 0.996 0.737
16� 1� 1 1.142 1.090 0.955

sy
mmetr

ic

R L

P

P

t

P

symmetric

free or with diaphragm

sy
mmetr

ic

Figure 6: Pinched cylinder and the element model

(without diaphragms) are

E = 1:05� 106; � = 0:3125; L = 10:35; R = 1:0; t = 0:094; P = 100:0;

while for the second case (with diaphragms), the parameters are set to be

E = 3� 106; � = 0:3; L = 600:0; R = 300:0; t = 3:0; P = 1:0:

Due to symmetry only one octant of the cylinder is modeled. The computed displacements at
the loading point are compared to the analytic solutions in Table 2. HEXDS element works well
in both cases, indicating that this element can avoid not only shear locking but also membrane
locking; this is not unexpected since membrane locking occurs primarily in curved elements
(Stolarski, 1983).

Scordelis-Lo Roof
Scordelis-Lo roof subjected to its own weight is shown in Figure 7. Both ends of the roof
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Table 2: Normalized displacement at loading point of pinched cylinder

(a) First case without diaphragms
Analytical solutionwmax = 0:1137

Mesh 10� 10� 2 16� 16� 4 20� 20� 4
HEXDS 1.106 1.054 1.067

(a) Second case with diaphragms
Analytical solutionwmax = 1:8248� 10�5

Mesh 10� 10� 2 16� 16� 4 20� 20� 4
HEXDS 0.801 0.945 0.978

θ

2

R

t
L

Figure 7: Scordelis-Lo roof under self weight

are assumed to be covered with rigid diaphragms. The parameters are selected to be:E =
4:32 � 108, � = 0:0, L = 50:0, R = 25:0, t = 0:25, � = 40Æ, and the gravity is 360.0 per
volume.

Due to symmetry only one quarter of the roof is modeled. The computed displacement at the
midpoint of the edge is compared to the analytic solution in Table 3. In this example the HEXDS
element can get good result with100� 2 elements.

Table 3: Normalized displacement at mid-edge of Scordelis-Lo roof

Analytical solutionwmax = 0:3024
Mesh 8� 8� 1 16� 16� 1 32� 32� 1 10� 10� 2

HEXDS 1.157 1.137 1.132 1.045

Circular Sheet Stretched with a Tight Die
A circular sheet is stretched under a hemisphere punch and a tight die with a small corner radius
(Fig. 8). The material is elastoplastic with nonlinear hardening rule. The elastic material con-
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Figure 8: Circular sheet stretched with a tight die

stants are:E = 206GPa and� = 0:3. In the plastic range, the uniaxial stress-strain curve is
given by

� = K"n;

whereK = 509:8MPa,n = 0:21, � is Cauchy stress and" is natural strain (logarithmic strain).
The initial yield stress is obtained to be�0 = 103:405Mpa and the tangent modulus at the initial
yield point isEt = 0:4326� 105MPa.

Because of the small corner radius of the die, the same difficulties as in the problem of sheet
stretch under the rigid cylinders lead the shell elements to failure in this problem. Three dimen-
sional solid elements are needed and fine meshes should be put in the areas near the center and
the edge of the sheet.

One quarter of the sheet is modeled with1400� 2 HEXDS elements due to the double symme-
tries. The mesh is shown in Fig. 9. Two layers of elements are used in the thickness. Around the
center and near the circular edge of the sheet, fine mesh is used. The nodes on the edge are fixed
in x- andy-directions and the bottom nodes on the edge are prescribed in three directions. No
friction is considered in this simulation. For comparison, the axisymmetric four-node element
with reduced integration (CAX4R) is also used and the mesh for this element is the same as
shown in the top of Figure 9.

The results presented here are after the punch has traveled down 50 mm. The profile of the cir-
cular sheet is shown in Figure 10 where we can see that the sheet under the punch experiences
most of the stretching and the thickness of the sheet above the die changes a lot. The defor-
mation between the punch and the die is small. However, the sheet thickness obtained by the
CAX4R element is less than that by the HEXDS element and there is slight difference above
the die. These observations can be verified by the strain distributions in the sheet along the ra-
dial direction (Figures 12). The direction of the radial strain is the tangent of the mid-surface
of the element in therz plane and the thickness strain is in the direction perpendicular to the
mid-surface of the element. The unit vector of the circumferential strain is defined as the cross-
product of the directional cosine vectors of the radial strain and the thickness strain. We can see
that the CAX4R element yields larger strain components in the area under the punch than the
HEXDS element. The main difference of the strain distributions in the region above the die is
that the CAX4R element gives zero circumferential strain in this area but the HEXDS element
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Figure 12: Strain distributions in circular sheet with punch travel 50 mm
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yields non-zero strain. The value of the reaction force shown in the Figure 11 is only one quarter
of the total punch reaction force since only one quarter of the sheet is modeled. From this figure
we can see that the sheet begins softening after the punch travels down about 45 mm, indicating
that the sheet may have necking though this cannot be seen clearly from Figure 10.

CONCLUSIONS

A new eight-node hexahedral element is implemented for the large deformation elastic-plastic
analysis. Formulated in the corotational coordinate system, this element is shown to be effective
and efficient and can achieve fast convergence in solving a wide variety of nonlinear problems.

By using a corotational system which rotates with the element, the locking phenomena can
be suppressed by omitting certain terms in the generalized strain operators. In addition, the
integration of the constitutive equation in the corotational system takes the same simple form as
small deformation theory since the stress and strain tensors defined in this corotational system
are objective.

Radial return algorithm is used to integrate the rate-independent elastoplastic constitutive equa-
tion. The tangent stiffness matrix consistently derived from this integration scheme is crucial to
preserve the second order convergence rate of the Newton’s iteration method for the nonlinear
static analyses.

Test problems studied in this paper demonstrate that the element is suitable to continuum and
structural numerical simulations. In metal sheet forming analysis, this element has advantages
over shell elements for certain problems where through the thickness deformation and strains are
significant.
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