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ABSTRACT

A new particle element has been added to LS-DYNA. It is based on Smoothed Particle
Hydrodynamics theory. SPH is a meshless lagrangian numerical technique used to model
the fluid equations of motion. SPH has proved to be useful in certain class of problems
where large mesh distortions occur such as high velocity impact, crash simulations or
compressible fluid dynamics.

First, we introduce the basis principles of the SPH method. Then the coupling of this
technique to LS-DYNA is presented and the input needed for such analysis is provided.

INTRODUCTION

Meshless methods have known important developments these last years for resolving
conservation laws.

S.P.H. (Smoothed Particle Hydrodynamics) is a meshless lagrangian method developed
initially to simulate astrophysical problems. But, the easy way with which it is possible to
introduce sophisticated phenomena, has made of SPH a very interesting tool to resolve
other physic problems: resolution of continuum mechanics, crash simulations, ductile and
brittle fracture in solids.

The easy use of SPH allows the resolution of many problems that are hardly reproducible
with classical methods. It is very easy to obtain a first approach of the kinematics of the
problem to study. For instance, due to the absence of mesh, one can calculate problems
with large irregular geometry.

From a computational point of view, we represent a fluid with a set of moving particles
evolving at the flow velocity. Each SPH particle represents an interpolation point on
which all the properties of the fluid are known. The solution of the entire problem is then
calculated on all the particles with a regular interpolation function, the so-called
smoothing length. The equations of conservation are then equivalent to terms expressing
fluxes or inter-particular forces.

In this paper, we give the basis principles of the method. The important development of
the method is the definition of a new consistent approximation that leads to a new class of
renormalization formulations. We then provide the philosophy used to implement the
particle element into LS-DYNA. Finally, sample examples illustrating this new capability
are included.

BASIS PRINCIPLES OF THE SPH METHOD

Particle methods are based on quadrature formulas on moving particles
Piii
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P is the set of the particles,xi(t) is the location of particlei andwi(t) is the weight of the
particle. We classically move the particles along the characteristic curves of the fieldv
and also modify the weigths with the divergence of the flow to conserve the volume :
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We can then write the following quadrature formula :
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Particle Approximation of Function
The previous quadrature formula together with the notion of smoothing kernel leads to
the definition of the particle approximation of a function.

To define the smoothing kernel, we need first to introduce an auxiliary functionθ. The
most useful function used by the SPH community is the cubic B-spline which has some
good properties of regularity.

It is defined by:
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whereC is the constant of normalization that depends on the space dimension.

We have then enough elements to define the smoothing kernelW:
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δ→− ),( hxxW ji when 0→h , whereδ is the Dirac function.h is a function of

xi andxj and is the so-called smoothing length of the kernel.

We can now define the particle approximationΠhu of the functionu, by approximating
the integral (1.2):
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The approximation of gradients is obtained by applying the operator of derivation on the
smoothing length. We then obtain :
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Gather Approximation
In finite differences or finite elements, we have only one spatial discretization parameter.
One major difference of SPH with these classical technics is that we have two parameters

to determine the spatial resolution: the smoothing lengthh and the characteristic length
of the mesh x∆ .
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At the really beginning of SPH at the end of the 70's, the smoothing length was choosen
to remain constant during all the simulation. Recent developments showed the advantage
for each particle to have its own smoothing length, which depends on the local number of
particles.

The smoothing lengthh represents the mean value of the smoothing length betweenxi

and xj. In earlier formulations, the choice ofh was given by 2/))()(( ji xhxhh += ,

where )( ixh and )( jxh are the smoothing length values respectively for particlexi andxj.

The reason of this choice is that it easily leads to conservative schemes.

Recent works proved that this approximation is not consistent and can lead to unstable
results. A new class of methods has been rising since 1996: renormalization, moving least
square,… They lead to a better understanding of stability and convergence problems. One

good choice is to define )( ixhh = . This is called the gather formulation. This
formulation means that the neighbour particles of a given particle are the particles that are
included in a sphere centered inxi with a radius of )( ixh . This choice has been
introduced in LS-DYNA. The convergence criteria are known for this approximation and
leads to a better precision for SPH calculation.

SPH/LS-DYNA COUPLING

Because of the lack of a numerical grid, the SPH processor requires some conditions in
setting the initial particle masses and coordinates. The particle mesh needs to be enough
regular. It means that all the particles of a given neighbourhood need to have the same
mass. As a consequence, the particles of a same material, which have the same initial
density, need to have the same initial volume. To preserve this, they need to be
distributed on a uniform mesh. For instance, when meshing a cylinder it is better to use
Mesh 1 than Mesh 2 to guarantee stability and convergence of the method.

Mesh 1 Mesh2

User defines some initial conditions for the SPH elements (initial smoothing length, part
id, eos, material law, mass of the particle). Some new keywords have been defined to use
the new SPH option.

*CONTROL_SPH : which defines the general control parameters needed
for the calculation.
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*SECTION_SPH : which defines parameters for every part of SPH
particles.

*ELEMENT_SPH: which defines every particle, assigns its part ID and
mass.

The declaration of a PART with SPH elements is done classically.

*NODE NID X Y Z

*ELEMENT_SPH NID PID MASS

*PART PID SID MID EOSID

*SECTION_SPH SID CSLH

*MAT_ELASTIC MID RO E PR DA DB

*EOS EOSID

The SPH processor has been developed as an extra layer of LS-DYNA. Therefore, all the
actual features of LS-DYNA can be used with the particles. Initial velocities, contacts,
rigid walls, … are defined by using classical keywords of LS-DYNA.

When running a SPH calculation, a flag is activated indicating the presence of SPH
particles. Then for these special elements, we call the SPH processor. The nodal forces
between the particles are computed as well as the energy, pressure and the deviatoric
stresses. This is done by using the particle approximations of the equations of
conservation (mass, momentum, energy). Once we have all the mechanical quantities for
the particles we return to the LS-DYNA main program. The connection of the particles to
the brick and shell elements is realised by using the classical nodes to surface contacts of
LS-DYNA.

CONCLUSIONS

A particle element method has been implemented in LS-DYNA. We presented that new
technique based on Smoothed Particle Hydrodynamics. We provided the data needed for
its use in LS-DYNA. The SPH processor can be an alternative to resolve problems with
large deformation and mesh tangling.
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