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ABSTRACT

This work presents the finite element formulation of a higher order shear
deformation shell element for nonlinear dynamic analysis with explicit time
integration scheme. A corotational approach is combined with the velocity
strain equations of a general third order theory in the formulation of a four-
noded quadrilateral element with selectively reduced integration. A bilinear
isoparametric formulation is utilized in the shell plane resulting in 9 degrees
of freedom per node. The formulation requires C0 continuity for the nodal
variables. The finite element implementation of the new element in a
general explicit finite element code is described in details, including
boundary conditions and nodal mass calculation. A simple formula for the
explicit time integration critical time step of the higher order element is
developed. The described element is capable of correctly representing the
through thickness distribution of the transverse shear, which makes it
suitable for composite and sandwich shells analysis. In addition, the
developed shell can be used for better representation of plastic flow through
thickness in isotropic materials. It has been added to the element library of
the nonlinear explicit finite element code DYNA3D. Its performance has
been evaluated through a series of standard shell verification test problems,
which show great promise for many applications. The results are presented
in Part II of the present work.

Key words: nonlinear higher order shear deformation shell element, explicit
finite element analysis, corotational formulation, refined shell theory,
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INTRODUCTION

Creating new and improve existing analysis theories and formulations for plate and shell
structures has been an active research area for decades. The specific geometric properties of
plates and shells have been exploited to create numerous two-dimensional analysis
formulations, which, in general, have provided significant simplifications and improved the
analysis efficiency compared to the 3-D continuum mechanics solution approach. The
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simplest and oldest of these shell analysis formulations are based on the Love-Kirchhoff
hypothesis and are well known as classic theories. One of their basic characteristics is
neglecting the transverse shear deformation effects, which results in underpredicting of
deflections and stresses, and overpredicting buckling loads and natural frequencies.
Nevertheless, their accuracy is usually very good when the analysis involves thin
homogeneous shells of conventional structural materials like metals. However, “unconven-
tional” composite or sandwich shells are more and more often replacing these “conventional”
shells. Their numerous advantages compared to metal shells like improved strength, stiffness,
durability, cost, etc., as well as the technological advancements in their production have made
composite and sandwich shells the preferred choice in many engineering structures. These
shells differ significantly from metal shells: they are neither thin, nor homogeneous, and the
neglected transverse shear plays a very important role in their behavior patterns. All this has
made their analysis based on the classical shell theories inadequate and has invoked the
development of more complicated and powerful analysis formulations, considering the
transverse shear deformation effects. Most of the earlier developed approaches to composite
and sandwich shell analysis are based on the Reissner [1]–Mindlin [2] type first order shear
deformation theories. These theories assume that normals, which are initially straight and
perpendicular to the reference surface, remain straight but are not necessarily perpendicular to
the reference surface after the loading is applied. Hrabok and Hrudy [3], Ha [4], Burton and
Noor [5], Zenkert [6], and the extensive review by Noor et al. [7], just to name a few, have
described and referenced many of these theories. The major disadvantage of the first order
theories is that although they account for the transverse shear they cannot correctly represent
its through thickness distribution. As a result the traction conditions at the shell surfaces are
violated. They also require shear correction coefficients to correct the corresponding strain
energy terms and these coefficients are problem dependent and are not always easy to
determine. As the shell thickness decreases these theories tend to experience shear locking.
The displacement based formulations of the first order shear deformation theories represent
the in-plane shell displacements as linear functions of the thickness coordinate, and the
transverse displacements are assumed constant through the shell thickness. To overcome
some of the disadvantages of the first order theories, the through thickness distributions of the
displacement functions are assumed to be higher order polynomials of the thickness
coordinate, resulting in a higher order shear deformation theory. Different authors have
assumed quadratic, cubic, or higher degree polynomials. Higher order theories have been
systematically described and referenced by Pandya and Kant [8], Reddy [9], Ha [4], Noor et
al. [7], and others. An important holdback for the finite element implementation of the higher
order theories is the fact that most of them require C1 continuity of the nodal variables. This
restricts their implementation into isoparametric shell elements with bilinear in-plane shape
functions. The C1 continuity requirement has been overcome in some higher order shear
deformation theories, which only require C0 continuity (see Kant and Kommineni [10]) and
thus allow the use of bilinear isoparametric formulation.

The progress of the finite element formulations for shells follows the shell theory
development. Starting with shell elements based on classical shell theories in earlier years, the
bulk of shell elements at present utilize a first order shear deformation formulation. These
first order shear deformable shell elements inherit both the advantages and disadvantages of
the corresponding theoretical formulation. While in most cases they are capable of producing
good results for the overall shell behavior, they cannot give accurate results for the transverse
shear and transverse normal strains and stresses in composite and sandwich shells, which are
very important in strength and failure analyses of these types of shell structures. To be able to
better represent the strain and stress distribution through the shell thickness a shell element
based on a higher order shell theory has to be utilized. Although higher order theories have
been known, developed, and discussed for quite a while, their finite element implementation
is presently quite limited. The main reasons for this are probably the widely spread notions
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that their implementation is too complicated and their usage will extensively decrease the
analysis computational efficiency. One aim of the present work is to oppose these notions by
describing a simple and efficient finite element implementation of higher order shear
deformation theories for explicit finite element analysis.

Explicit finite element analysis has already proven its efficiency and reliability in nonlinear
dynamics of shells through its implementation in different research and commercial codes
like DYNA3D [11], LS-DYNA [12], and ABAQUS/Explicit [13] to name just a few. Its
performance is strongly dependent upon the accuracy and efficiency of the shell elements it
utilizes. Elements based on first order shear deformation theory (e.g. see Hughes and Liu
[14], Belytschko et al. [15, 16, 17]) have been widely implemented and developed since the
1980’s. They were, and still seem to be considered the perfect combination of accuracy and
computational efficiency, and still are the major workhorse in most codes. A decade or so ago
it seemed that anything more complicated would be too heavy for the existent computational
hardware and would result in an inefficient analysis. Nowadays, due to the fast growing
computational power this has changed. It seems worthwhile to invest time and effort in
changing shell element formulations in direction of improving their accuracy if this could be
achieved without too much complication in the analysis formulation and its implementation.
In the present work the very efficient corotational approach used in the Belytschko-Lin-Tsay
[15] shell element is combined with a general third order shear deformation theory [18, 9, 19]
in the formulation of a bilinear four-noded quadrilateral element with selectively reduced
integration. The approach uses the velocity – rate of deformation relations. An isoparametric
formulation with bilinear shape functions is utilized resulting in 9 degrees of freedom (DOF)
per node. The new element is capable of correctly representing the through thickness
distribution of the transverse shear. It is applicable to problems involving large displacements,
and rotations. Its finite element implementation in a general explicit finite element code is
described in details in Part I, including boundary conditions, nodal mass calculation, and a
critical integration time step formula for the higher order element. The element formulation
has been coded in the nonlinear explicit finite element code DYNA3D and results from
standard verification tests are presented in Part II of the present work. The element proved to
fit quite well in the explicit time integration scheme and provide an excellent overall
performance.

THEORETICAL FORMULATION

The present third order shear deformation formulation follows the ideas of the well known
displacement based higher order theories described in many investigations and generalized by
one of the pioneers in that area – J.N. Reddy [9, 18]. The formulation is cast here using a
corotational description, Cauchy stress, and rate of deformation (or velocity strain). This
approach was first developed by Belytschko et al. [15] in the formulation of their first order
shear deformation shell element.

The transformation matrix between the global and a local coordinate system is defined by

[ ] [ ]T
321 eeeT = , (1)

wheree1, e2, ande3, are the unit vectors of the local corotational coordinate systemzyx ˆˆˆ . This
coordinate system is defined from the current geometry and configuration of the element and
rotates with it in space. The unit vectorse1 ande2 remain tangent to the shell midsurface, and

213 eee ×= is normal to the midsurface. For each in-plane integration point with natural

coordinatesξ andη two vectors tangent to the midsurface are defined:



7-4

ηξ
�
�

�
�
�

�

ξ∂
∂

ξ∂
∂

ξ∂
∂=

,

1
zyx

t ;

ηξ
�
�

�
�
�

�

η∂
∂

η∂
∂

η∂
∂=

,

2
zyx

t . (2)

Then the vectors of the corotational coordinate system can be defined as
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×=≡ . (3)

This choice of coordinate system combined with the use of the rate of deformation and its
conjugate Cauchy stress proves very efficient due to the fact that most material constitutive
models are usually expressed through these two work conjugate tensors. No additional
transformations need to be performed in applying the constitutive relations. Furthermore, by
using a corotational approach the stress and strain tensor objectivity is preserved without the
need of any special treatment. Note that in some formulations in order to deal with the frame
invariance issues special stress rates (e.g. Jaumann or Green-Naghdi stress rates) have to be
calculated and transformed at each analysis step. In addition, the use of velocity strain makes
the present approach directly applicable to problems where the motion is path dependent, as is
the case in plasticity.

Although a 4-point selectively reduced integration in the shell plane is utilized in the present
work, the corotational system is defined only for the shell center point for the sake of
simplicity. The defined in this manner corotational system is used for all 4 integration points
for determining the fully integrated quantities, as well as for the single integration point for
the underintegrated quantities. This will limit the use of the formulated elements to small
strain problems, in particular shear strains must be limited. However, their accuracy will not
be significantly affected for most practical problems.

Following the notation of Belytschko et al. [15] all quantities expressed in the element local
coordinate system, in terms of the base vectorsei, will be denoted by a hat (ˆ·). The velocities
of all points of the shell are defined through the velocities of the reference surface, which is
the shell midsurface. The velocity components of an arbitrary point with thickness coordinate
ẑ in the local coordinate directions are defined as
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, (4.a)

where m
iv̂ is the translational velocity of the midsurface along local axisi, zyxi ˆ,ˆ,ˆ= ; iθ̂ is

the rotational velocity of the midsurface abouti for yxi ˆ,ˆ= ; iϕ̂ , and iψ̂ , yxi ˆ,ˆ= , are the

higher order terms in the velocity expansion polynomials. Unlike the zero and first order
terms in the polynomial expansion, it is hard to assign any good physical meaning to the

higher order terms. However, sincem
iv̂ and iϕ̂ only cause membrane stresses they can be

referred to as membrane terms, whereasiθ̂ and iψ̂ , which cause bending stresses can be

referred to as bending terms.

At this point, let us define the velocity vector,v̂ :
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The velocity gradient,L , in the local coordinate system is defined as
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Then, the velocity strain will be
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Substituting (4.a) into (7) gives the following expressions for the velocity strain components:
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The above expressions for the velocity strain components, Eq. (8.a), can be combined with a
plain stress approach. Furthermore, they allow additional simplification of the formulation:
vanishing of the transverse shear stresses at the top and bottom shell surfaces yields

0ˆˆ =ϕ=ϕ yx . At that, the velocity field in (4.a) simplifies into
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and the corresponding velocity strain relations become
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which requires only 7 DOF in local and 9 DOF in global coordinate systems. Any further
reduction of variables based on the zero transverse shear stresses (e.g. see Averill and Reddy
[19]) require C1 continuity for the nodal variables. The bilinear isoparametric formulation
herein utilized provides only C0 continuity, therefore, no further reduction is possible.

The rate form of the constitutive law expressed in the corotational system is

ddσCσ
r

r ,...),,(t= , (9)

whereσσσσ is the Cauchy stress tensor andC is the tensor of material moduli, which is a fourth
order tensor and, in general, may depend upon time,t, stress, strain rate, back stress if
plasticity is involved, etc. The components of the velocity strain, Eq. (8.a,b), can be directly
used in the constitutive calculations to evaluate the corresponding stress tensor components.
Since the corotational coordinate system rotates with the element, its axes almost exactly
coincide with the element material axes (for a detailed reasoning of this see Section 2 of
Belytschko et al. [15]) and there is no need for frame invariance corrections. This is probably
one of the main factors defining the simplicity of the approach, and it is well known that in
the finite element analysis simplicity usually transfers into computational efficiency.

FINITE ELEMENT EQUATIONS

Following the present notation, the finite element equations of motion are
intext ffvM −=r , (10)

whereM is the mass matrix,vr is the acceleration vector (v is the velocity vector defined in
Eq. (5) in local coordinates), andfext andf int are the vectors of the external and internal forces
respectively. Typically, at each time step of an explicit time integration scheme, we solve for
the unknown nodal accelerations and integrate them to get the nodal velocities and nodal
displacements. The acceleration vector corresponding to the velocity field in (4.b) will be
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are the vectors with the nodal DOF in the local coordinate system. In global coordinate
system these vectors will be
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and the transformation from global to local coordinate system is performed using the already
defined transformation matrix:

[ ] [ ] [ ]ψTψθTθvTvm === ˆ;ˆ;ˆ m (13)

Note that any projections in the localẑ direction for θ̂ and ψ̂ are ignored when
transferring the vectors from global to local coordinate system.

To be able to utilize this scheme we also need to define the internal and external force
vectors, the mass matrix, and the boundary conditions applied to the solved system.

Internal Nodal Forces
The internal nodal force vectors for each node are assembled from the contribution of each
adjacent element. For each element, the internal forces are distributed to its nodes. For the
velocity field in (4.b), the internal force vector of nodeI of elemente will be
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Here e
I

e
I mf , , and e

Iq are the internal nodal forces, moments and the higher order force

terms for nodeI of elemente. They can be expressed using the principle of virtual power in
local coordinates:
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where d̂ and σ̂ are the plain stress velocity strain and stress tensors arranged as vectors:
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According to the bilinear isoparametric formulation the midplane geometry and the
components of the velocity field throughout the element midplane are expressed as
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whereNI is the I-th shape function; repeated subscript indices imply summation over that
index; and for the 4-noded quadrilateral shell element the node numberI varies from 1 to 4.
Then the velocity strain components, Eq. (8.b), expressed through the nodal DOF will be
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Now, plugging the velocity strain components, Eq. (18), into the velocity strain vector, Eq.
(16), and substituting the velocity strain and the stress vectors, (16), into (15), and by using
the arbitrariness of the variations, we get the following expressions for the nodal internal
forces:
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The above integrals are evaluated over the element volume,Ve, and depending on the
assumed numerical integration rule can be further simplified. For example, the first integral



7-9

( )

ηξ
�
�

�

�

�
�

�

�
σ+σ=

=
�
�

�

�

�
�

�

�
σ+σ=σ+σ=

� � ��

� � ���

ξ η

ddzdBzdB

ydxdzdBzdBdVBBf

z

xyI

z

xI

x y z

xyI

z

xI

V

xyIxI
e

xI
e

J
ˆ

2
ˆ

1

ˆ ˆ ˆ
2

ˆ
121

ˆˆˆˆ

ˆˆˆˆˆˆˆˆˆ

, (20)

where J is the determinant of the element Jacobian matrix, andξ and η are the

isoparametric coordinates: 1,1 ≤ηξ≤− . The integrals alongẑ can be numerically

evaluated depending on the through thickness integration rule, and the integrals alongξ andη
– depending on the in-plane integration rule, and the integration type – full, selectively
reduced, or uniformly reduced.

Nodal Mass Calculation
To calculate the shell element mass matrix, the procedure described by Hughes et al. [20] and
implemented in DYNA3D and LS-DYNA for all shell elements (see Section 9.4 in [12]) is
used. The procedure defines only translational and rotational masses for the 6 DOF per node
shell elements; therefore, the masses corresponding to the higher order terms have to be
additionally defined.

Since in explicit calculations a diagonal mass matrix is desirable the consistent mass matrix
defined by

� ρ=
eV

T dVNNM (21)

cannot be directly used. HereN is the shape function matrix andρ is the material density. To
get a diagonal mass matrix, first, the translational nodal masses are calculated by distributing
the total element mass evenly among the 4 element nodes. Then the rotational and higher
order nodal masses are calculated by scaling the translational mass at the node by a factorα:

tmm θθ α= (22)

tmm ψψ α= .

Heremt, mθ, andmψ are the translational, rotational and the higher order nodal masses, and
the factorsα are defined as follows:

�

�

�

�
==α==α ψ

ψ
θ

θ

h

h

t

h

h

t dz

dzz

m

m

dz

dzz

m

m

62

; , (23)

whereh is the shell thickness. If the reference surface is the shell midsurface andA is the
element area, then

448
;

12
;

4

62 hh
h

A
mt =α=αρ= ψθ . (24)

The nodal masses thus defined are used in the finite element equations of motion, Eq. (10):mt

is used in calculating the translational accelerations, mvrˆ ; mθ is used for the rotational

accelerations,θ
rˆ ; andmψ is used for the higher order acceleration terms –ψrˆ . In this manner

the total mass of the system is correctly represented. The mass lumping procedure described
by Kant and Kommineni [10] in their higher order element formulation and based on the
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original work of Hinton et al. [21] is similar and will result in the same mass matrix. In both
procedures the translational mass components in the diagonal mass matrix sum up to the total
mass of the structure.

Boundary and Loading Conditions
When the displacement based finite element formulation involves 6 DOF per node they all
have a sound physical interpretation and so do their corresponding displacement boundary
conditions. It is not so with the higher order formulation. Since the higher order terms cannot
be related to a specific physical term in the displacement field, like translations and rotations
for the lower order terms, it cannot be expected from the finite element user to be able to
specify values for them at physically restricted boundaries. Therefore, it is probably best if the
boundary conditions for the higher order terms were internally specified without the need for
the user to specify them. Furthermore, this approach will presumably require least changes
when implementing the higher order shell formulation in an existing finite element code. To
illustrate how this can be done, let us consider the simple cases of a clamped and a simply
supported edge. It isobvious that in a clamped edge all displacement components should be
zero. So, in the finite element input the user would specify zero conditions for the translations
and rotations, and the rest of the displacement components should also be zeroed out in the
code. In the case of a simply supported edge translations are zeroed out and rotations are not
restricted. In this case the higher order bending terms (corresponding toψi) should be free.
Based on the above considerations, an algorithm for applying the boundary conditions on the
in-plane displacements would consist of the following rules:
•= Whenever zero is specified forθx, also zero outψx.
•= Whenever zero is specified forθy, also zero outψy.
This simple algorithm was applied in the finite element implementation of the present
formulation and it seems to work quite well.

The formulation of the higher order shell element does not require any changes in the way the
external loading is specified compared to the first order shear deformable shell elements for
concentrated forces, distributed loading along the shell sides, and lateral pressure.

There are different approaches to treating the drilling DOF for shell elements, the simplest of
which is to ignore thez-component of the rotational velocity in local coordinate system. This

same approach can be directly applied to the present element. Sincezθ̂ is not used in the
formulation any external loading corresponding to it can just be ignored.

CRITICAL TIME STEP

Due to the conditional stability of the explicit time integration scheme the time step
calculation plays a very important role for its performance. Larger time steps decrease the
computational effort for solving the problem, but if a certain limit called critical time step,
∆tcr, is exceeded the solution rapidly diverges. To be able to efficiently use the well-known
expression for the critical time step

max

2

ω
=∆ crt , (25)

a simple estimate of the highest natural frequency,ωmax, of the structure is required. Since
ωmax of the structure is smaller than the highest natural frequency of the finite elements that
constitute it, Eq. (25) can be transformed into
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=
ω

=∆∆=∆
(26)

Here ( )ie
crt∆ and ( )ie

maxω are the critical time step and the highest natural frequency of the

i–th element.
Therefore, the problem of determining the critical time step consists of determining it on
element level. At that, the highest natural frequency of the element has to be evaluated. For
that purpose let us define the generalized eigenvalue problem for an element of an undamped
system

[ ] [ ]( ){ } { }0uMK =ω− eee 2 . (27)

Solving this forω for each element throughout the whole analysis duration is a rather tedious
task that could render the whole explicit scheme inefficient. Furthermore, the element

stiffness matrix, [ ]eK , is not readily available in a typical explicit analysis scheme.
Therefore, different solutions have been developed for all currently utilized element types in
the explicit finite element solvers. The general idea of all of them is to come up with an
estimate of the value ofωmax based on the material properties and dimensions of the element.
Usually a more or less coarse upper bound ofωmax is calculated and used in the critical time
step relation, Eq. (26). Flanagan and Belytschko [22] applied Gerschgorin’s theorem [23] in
developing estimates for the highest natural frequencies of three-dimensional hexahedron and
two-dimensional quadrilateral elements with a single quadrature point. This resulted in simple

formulas for e
maxω , which can be used in Eq. (26) to get an estimate for the element critical

time step. The application of Gerschgorin’s theorem and the Rayleigh quotient in determining
the critical time step is described and analyzed by Kulak [24]. Simple formulas for time step
calculation used in LS-DYNA can be found in Chapter 19 of [12]. Leech[25] started with the
differential equation of equilibrium for the Kirchhoff shell to arrive at an estimate for its
critical time step. His approach was later used by Tsui and Tong [26] to develop a time step
estimate for the Mindlin type shells. They came up with a relatively simple formula for the
critical time step, which was slightly modified and used by Kant and Mallikarjuna [27]. Due
to the lack of an estimate for the critical time step of higher order shear deformable shell
elements Kant and Kommineni [10] used this same formula as an initial estimate in the
implementation of their higher order element. However, this formula is derived based on the
differential equation of equilibrium of the first order Mindlin shell and therefore is not
applicable to higher order shear deformable shells. It was checked with several test problems
in the present study and in all cases it significantly overestimated the critical time step. It is
obvious that with the introduction of the higher order elements in the explicit analysis simple
and efficient estimate of the critical time step for these elements is needed. Such an estimate
is herein developed for the proposed 4-noded quadrilateral element.

Let us start with the shell element implementing the velocity field in Eq. (4.b). It has 7 DOF
per node in local coordinate system resulting in a total of 28 DOF per element and its mass
and stiffness matrices have dimensions of 28×28. Since the ultimate goal is to develop a
symbolic expression for the critical time step all computations have to be symbolically
performed. Obviously, this is an impossible task for a shell element of general geometry.
Therefore, we will derive the formulas for a rectangular plane element of sides with lengtha
andb along the localx andy axes respectively. Thex andy axes are in the shell plane, and the
z-axis is normal to the shell, the coordinate system origin is at the shell center. The shell
thickness ish. The material of the shell is homogeneous isotropic with densityρ and three-
dimensional constitutive matrix
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whereE is the Young’s modulus andν is Poisson’s ratio.
To be able to use the generalized eigenvalue problem, Eq. (27), we need to assemble the
element mass and stiffness matrices. The element lumped diagonal mass matrix is

[ ]
[ ]

[ ]
[ ]
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�
�
�

�

�

�
�
�
�

�
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, (29)

where0n×m is ann×m matrix of zeros and[ ]nM is the nodal diagonal mass matrix:
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ψ××

×θ×
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M00
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00M
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2323t

n , (30)

and [ ] [ ] 33×= IM tt m , [ ] [ ] 22×θθ = IM m , and [ ] [ ] 22×ψψ = IM m . Here[ ] nn×I is then×n

identity matrix,
4

hab
mt

ρ= , andmθ, andmψ are already defined in the nodal mass section

of this paper.

The element stiffness matrix is

[ ] [ ] [ ][ ] [ ] [ ][ ] dzdydxdV
eV

h

h
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TTe
� � � �

− − −

==
2

2

2

2

2

2

BCBBCBK , (31)

where

[ ] [ ] [ ] [ ] [ ][ ] 2854321 ×= BBBBB , (32)

and
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HereI is the nodal number,I = 1, …, 4, andNI are the element shape functions:
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Although the element implementation is based on isoparametric representation, its use will
only complicate the present calculations and therefore is avoided. The above shape functions
are different than the isoparametric shape functions used in the element implementation.

Having thus defined the element mass and stiffness matrices let us transform the generalized
eigenvalue problem, Eq. (27), into a standard eigenvalue problem. Following the approach
described in Chapter 10.2.5 of Bathe [28], which results in a symmetric standard eigenvalue
problem, we can represent the mass matrix by

[ ] [ ][ ]Te SSM = , (35)
where

�
�
�

≠
==
jifor

jiforM
S ij

ij
0

. (36)

Note that[ ] [ ]SS =T
. Since [S] is a diagonal matrix it is very easy to express [S]–1. Then the

generalized eigenvalue problem, Eq. (27), can be transformed into the following standard
eigenvalue problem:

[ ] [ ]( ){ } { }0uIK =ω− ee ~~ 2 . (37)

where [ ] [ ] [ ][ ] 11~ −−= SKSK ee and { } [ ]{ }ee uSu =~ . The matrix [ ]eK
~

can be

symbolically assembled using a mathematical symbolic processor. Thene
maxω will be its

maximum eigenvalue. Although it seems impossible to generate the eigenvalues of a 28×28
symbolic matrix it is feasible to make an estimate of its maximum eigenvalue using matrix
norms. Here the infinity norm and the Frobelius norm (see Chapter 7 of [23]) were used to
generate expressions for the maximum eigenvalue estimate. The infinity norm resulted in a

lesser estimate for e
maxω . Since [ ]eK

~
is a symmetric matrix the 1-norm and the infinity

norm will produce the same result. Note that using the infinity norm there is more than one
expression that could possibly be the correct eigenvalue estimate. Therefore, several different
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geometric and material properties were used, which resulted in the same expression for the
estimate, which is as follows

( ) ( )
( )ν+ρ

+≤ω
2

15

632152
2max

h

Ee . (38)

Then for the critical time step of the element we get

( )
E

htcr
ν+ρ≥∆ 1

3412.0 . (39)

Note that since all eigenvalues of[ ]eK
~

are real, the infinity norm will produce the same
result as with applying Gerschgorin’s theorem to the eigenvalue problem, Eq. (37). Although
the above formulas are developed for rectangular shell elements, they could probably be used
for an element of arbitrary shape.

The performance of the above formulas for∆tcr, Eq. (39), was checked with the higher order
shell element defined herein and implemented into DYNA3D. Results are compared with the
exact critical time step calculated by solving the eigenvalue problem with concrete values for
each variable. They are presented in Table 1. As seen the results acquired with the simple
formulas give an excellent estimate for the critical time step.

Table 1

Test Problem Exact,µsec Eq. (39),µsec % of Exact

Problem 3 3.327 2.860 86.0

Problem 4 0.8404 0.7863 93.6

Problem 5 0.2612 0.2400 91.9

Problem 6 0.8386 0.7704 91.9

Note: The problems in table 1 are taken from part II of the present work.

CONCLUSIONS

The explicit time integration scheme in the finite element analysis requires small time steps,
which results in a huge number of steps for a complete analysis. Therefore, the finite elements
defined for that type of analysis must be simple and computationally efficient. The higher
order shell element herein formulated is considered a further step in increasing the accuracy
while preserving simplicity and efficiency in the shell formulations for nonlinear dynamic
explicit analysis. Its improved accuracy is due to the higher order shear deformation theory
used in its formulation, and the efficiency is due to the corotational approach utilized and the
velocity gradient used. The theoretical formulation of the new shell element is presented here
and the basics for its implementation in an explicit dynamic finite element code are described.
A simple formula for the critical time step of the explicit time integration scheme for the
higher order element is derived. Its performance proved excellent. The higher order shell
element has been implemented into the explicit code DYNA3D and the results from standard
verification tests carried out on the new element are presented in Part II of the present work.
The developed element is capable of correctly representing the through thickness distribution
of the transverse shear, which makes it suitable for composite and sandwich shell analysis. In
addition, the developed shell can be used for better representation of plastic flow through the
thickness of isotropic materials.
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