
17-1

Partitioning Effects on MPI LS-DYNA Performance

Jeffrey G. Zais
IBM

1308 Third Street
Hudson, WI 54016-1225

zais@us.ibm.com

Abbreviations:
MPI – message-passing interface
RISC - reduced instruction set computing
SMP - shared memory parallel
MPP – massively parallel processing

Keywords:
Crash Simulation, LS-DYNA, Metal Stamping, Parallel Computing,
Performance, Workstation

17-2

ABSTRACT

The MPI version of LS-DYNA includes several options for decomposition of the finite element
model. In this paper, the use of these options will be explored, for both metalforming and
automotive crash simulations for input decks with size ranging from small to very large. The
effect on elapsed time performance and scalability will be measured for different partitioning
options. In addition, performance characteristics of a workstation cluster will be evaluated.

INTRODUCTION

The MPI version of LS-DYNA has been developed by LSTC throughout the 1990’s . A
primary goal for the code has been superior scalability, enabling many processors to work
together efficiently in the execution of LS-DYNA.

Some important aspects which affect performance of the MPI version are processor speed,
model characteristics (size and type of elements), communication, and load balance. Processor
performance has a very direct impact on MPI LS-DYNA elapsedtime, but for the purposes of
this study, the type of processors will be considered fixed, so the resulting variations in
performance will not be considered.

Conversely, communication and load balance can be somewhat controlled by the end user.
During the initialization phase of the MPI code, the model is partitioned into several domains,
and the arrangement of these domains will cause changes in how much communication is
required between the domains, and will also influence the load imbalance between the domains.
This study demonstrates, for several representative input decks, how various partitioning
options affect overall performance.

SMP PARALLELISM IN LS-DYNA

The first LS-DYNA multi-processor version was an SMP (shared memory parallel)
implementation available on the CRAY Y-MP in 1989. Subsequently, SMP Parallel LS-DYNA
has been ported to many computer platforms and architectures, ranging from high-end vector
supercomputers to RISC-based servers to machines based on low-cost commodity-based
microprocessors. For all of these computers, SMP parallelism is achieved in basically the same
fashion. Compilers use directives inserted into the LS-DYNA source code to generate machine
instructions which divide the work for key loops among the available processors specified by
the user. Only loops which are “safe” - those that will produce correct results when run in
parallel - have these parallel constructs.

In SMP parallelism, there are several barriers which cause less than ideal scaling. Chief
among them is the fact that only a certain number of the loops in the code are able to run in
parallel. Even for those loops that are parallel, there is startup time where the work is divided
among the various processors, adding to system overhead. Finally, even though the work is
scheduled as evenly as possible, load imbalance among the processors means that some
processors will complete their portion of the work in a loop and must wait for the others, before
the machine can advance to the next section of the LS-DYNA code.

Because of all these factors, SMP parallel performance is limited. While experts from the
LSTC development team and the various computer hardware vendors continually work on

17-3

improving SMP parallel performance, parallel scalability beyond 4 or 6 processors is not very
effective, and is not used very often in a production environment.

MPI PARALLELISM IN LS-DYNA

Characteristics of MPI LS-DYNA
The limits on SMP parallelism, not just in LS-DYNA, but in many codes, have led to the
development of domain decomposition parallel methods. The chief advantage is that with
domain decomposition methods, a far greater percentage of the instructions can be run in
parallel, so the parallel efficiency is greater.

In the domain decomposition version of LS-DYNA, the geometry is divided into several
domains, one for each processor. During every time step, each processor advances the solution
for its own domain to the end of that time step. This process is independent of all other
domains, so it is highly parallel. However, before work on the next time step can begin,
communication must occur to relate information on the state of the solution to neighboring
domains. Once this communication is complete, the solution phase of the next time step
begins.

The communication in LS-DYNA takes place according to MPI (the message-passing
interface), a standard communication protocol. This is a portable set of communication calls
available on all popular computer systems. Therefore, the code is referred to either the MPI
version of LS-DYNA, or the domain decomposition version of LS-DYNA. Another common
name is “MPP-DYNA.” The MPP moniker was originally associated with the “massively
parallel processing” machines of the mid-1990’s, but as parallel computer architectures
evolved, “massively parallel” became something of a misnomer. TodayMPP-DYNA more
accurately refers to the “message-passing parallel” version of the code, as opposed to the
“shared memory parallel” version of LS-DYNA.

The MPP machines were envisioned with thousands of processors applied to execution of the
same binary. Parallel speedup of computers is limited by Amdahl’s Law. Figure 1 shows how
a code can scale as a function of percentage of time spent in parallel routines. In order to use
hundreds (or thousands) of processors a code must be more than 99.9% parallel. For a full-
featured industrial code like LS-DYNA, this is very difficult. Fortunately, LSTC has been able
to make the MPI version contain enough parallel content so that in cases it is more than 98%
parallel and can scale efficiently up to 64 or more processors. Since microprocessors have
evolved to be very powerful in recent years, this level of scalability coupled with fast processors
allows the user to solve large LS-DYNA simulations in a reasonable elapsed times.

It is apparent that a well-selected set of domains could influence MPI LS-DYNA performance.
Load balance between the domains is achieved by insuring that each domain has an equal
amount of work required at each time step. This is, of course, more complicated than just
dividing the total number of elements in the model into groups with the same number of
elements. The computational cost of different types of elements and materials is one factor
which complicates the load balance. In addition, time spent in contact also has a great
influence on computational cost. The time spend in contact will also change during the
solution, so that a domain which initially produces good load balance may end up with much
worse load balance characteristics.

The relative cost for communication is also important. If the domains are established
incorrectly, great amounts of communication could be required between domains.

17-4

Because of these reasons, selection of the proper domain decomposition does influence
performance.

Figure 1. Amdahl’s law for parallel speedup. Each line corresponds to speedup for a particular
percentage of parallel instructions, from 50% to 99.9% parallel.

Default Partitioning
There are several options available for partitioning the LS-DYNA model. These are
documented in the LS-DYNA Users’ manual. The default method used for partitioning is
RCB (recursive coordinate bisection). The other methods available are RSB (recursive spectral
bisection) and “greedy.” The default RCB method usually produces the shortest elapsed time,
so the others will not be investigated here. The partitioning method can be specified in the
partitioning file, an optional file used by the MPI LS-DYNA binary, where the user can specify
several options relating to partitioning.

A useful tool for investigating the partitioning is theshowcommand in the partitioning file.
Enabling this option will cause LS-DYNA to halt just after initialization, with the partitioning
information graphically contained in the D3PLOT file. Figure 2 shows the NCAC Taurus
model partitioned into four domains.

0

20

40

60

80

100

120

0 32 64 96 128

Processors

P
ar

al
le

lS
pe

ed
up 50 80

90 95
98 99
99.5 99.9

17-5

Figure 2. Default partitioning of the NCAC Taurus model - 4 domains.

Geometric Partitioning
While using RCB, the partitioning can be controlled using both the geometry and the contact
surfaces of the model. This is useful because the default partitioning is sometimes less than
ideal. For instance, the NCAC Taurus model of Figure 2 is involved in a front crash, so that
most of the contact searching will take place in the front of the vehicle. Therefore, the two
domains at the front of the vehicle will require more computation than those at the rear of the
vehicle, leading to load imbalance. A better domain decomposition is something like that
which is displayed in Figure 3, where most domains runs from the front of the vehicle to the
back, so that all domains have similar contact characteristics, and better overall load balancing.

17-6

Figure 3. Customized partitioning of the NCAC Taurus model - 8 domains.

This type of domain decomposition can be achieved using the geometry optionsexpdirand
expsf. These options will expand the model in a certain direction (expdir) by a certain scale
factor (expsf) before the domain decomposition occurs. A typical usage is

decomposition (expdir 2 expsf 10)

which will stretch the model out by a factor of 10 in the Y direction. Once this is done, the
regular partitioning algorithm will generally partition the model in long strips from the front to
the rear of the vehicle, as desired.

Partitioning According to Contact Surfaces
For some crash input decks, the model can be efficiently partitioned according to the contact
surfaces (the sliding interfaces) through use of thesilist option in the partitioning file. A
typical front crash model may have one or perhaps a few sliding interfaces which involve the
elements toward the front end of the vehicle, where the contact occurs. Overall computational
cost is lessened by not making elements towards the rear of the vehicle members of these
sliding interface sets. Some less important sliding interfaces may exist in order to handle
particular cases of contact. By assigning the more important sliding interfaces to the silist, MPI
LS-DYNA will first partition the elements associated with those interfaces, and then follow
with the remainder of the elements. This helps prevent load balance problems, since the
primary contact surfaces are generally evenly distributed among the processors.

17-7

LS-DYNA PERFORMANCE IN STAMPING SIMULTATIONS

Even though it is a general-purpose code, LS-DYNA has historically been used primarily for
crash simulation and metal stamping, so those applications will be examined in this study.
This portion of the study examines some of the performance characteristics of stamping
simulations.

General Scalability of Stamping Input Decks
The scalability of MPI LS-DYNA increases as the number of elements in each model grows. In
order to assess the practical limits of scalability, several metalstamping input decks of various
sizes were provided by Volvo Car Company

Model Identifier Size (elements)
Stamp-141 141,000
Stamp-257 257,000
Stamp-655 655,000
Stamp-1090 1,090,000

Each input deck was run on a range of processors, between 1 and 64, and the timing
information was recorded from the D3HSP file. For each input deck, both the initialization
phase plus the simulation phase elapsed times decrease as more processors are used for the
analysis. Figure 4 shows an example of such data.

Figure 4. Parallel speedup for the Stamp-655 input deck.

0

5000

10000

15000

20000

25000

30000

35000

40000

1 2 4 8 16 32 64

Number of processors

E
la

ps
ed

tim
e

(s
ec

)

calculation

initialization

17-8

Data for all four input decks is summarized in Figure 5. In this plot, the vertical axis
represents the elapsed time speedup which occurs as the number of processors is doubled. Two
effects are obvious:

1. As more and more processors are used, the gain from parallelism decreases. However, for
the larger models it is still reasonable to use between 32 and 64 processors efficiently.

2. Better parallelism is observed for the larger models. For the smallest model used in this
study, the elapsed time actually increased as the number of processors went from 32 to 64.
Smaller models generate too much overhead which can’t be overcome with parallelism at
these processor counts.

Figure 5. Parallel speedup of all Stamping input decks.

Partitioning Options for Stamping
The LS-DYNA Users’ Manual recommends the following partitioning file options for stamping
input decks (assuming that the direction of travel for the punch is in the Z direction):

decomposition (expdir 3 expsf 0)

This essentially flattens out the input deck geometry before partitioning, and the model is
partitioned in a series of columns in the Z direction.

Partitioning Study with a Metal Stamping Input Deck
Two of the Volvo input decks were run to completion as a test of the partitioning options. Each
deck was run according to the LSTC recommendation, plus according to the other two
directions, as a comparison. Results of this experiment are shown in Figures 6 and 7. These
figures verify that the recommendations in the Users’ Manual are correct, demonstrating that
partitioning in the Z direction can substantially improve elapsed time performance. In
addition, the recommended solution appears more robust, since partitioning in the other

0

0.5

1

1.5

2

1->2 2->4 4->8 8->16 16->32 32->64

Increase in number of processors

P
ar

al
le

lS
pe

ed
up

Stamp-141
Stamp-257
Stamp-655
Stamp-1090

17-9

directions sometimes results in the simulation stopping at a point just before the planned
completion of the analysis.

Figure 6. Partitioning results for the Stamp-257 model.

Figure 7. Partitioning results for the Stamp-141 model.

15.41
16.68

13.62

0

2

4

6

8

10

12

14

16

18

E
la

ps
ed

tim
e

(h
r)

expdir 1

expdir 2
expdir 3

19.24
20.76

18.24

0
2
4
6
8

10
12
14
16
18
20
22

E
la

ps
ed

tim
e

(h
r)

expdir 1
expdir 2
expdir 3

17-10

LS-DYNA PERFORMANCE IN AUT OMOTIVE CRASH SIMULTATIONS

General Scalability of Automotive Crash Input Decks
General scalability of MPI LS-DYNA for automotive crash was measured by testing a variety of
input decks:

Elements Model Identifier
5,500 WPI Rigid Pole
28,000 NCAC Taurus
100,000 Customer Front Offset
275,000 NCAC Neon

Figures 8-11 show scalability results for these input decks, showing how the elapsed time
decreases as the number of processors increases. In general, performance of these input decks
is very similar to the tendencies observed in the stamping scalability study.

Figure 8. WPI Rigid Pole scalability.

Scalability on a workstation cluster
Use of the domain decomposition version of LS-DYNA allows users to run simulations on a
network of computers. As a first step in evaluating the efficiency of that concept, all of the
automotive crash input decks and one of the stamping input decks were run on a small network
of workstations in addition to the IBM RS/6000 SP computer. This network of workstations
consisted of two IBM 43P model 260 workstations, each with a pair of 200 MHz POWER3
processors, identical to those found in the RS/6000 SP system. Therefore, the only significant
difference in the two configurations was the interconnection:

0

1000

2000

3000

4000

5000

6000

7000

1 2 4 8 16 32

Processors

E
la

ps
ed

T
im

e
(s

ec
)

RS/6000 SP

Workstation cluster

17-11

System RS/6000 SP RS/6000 workstation cluster
Communication switch 100T Ethernet
Latency (microsec) 24 high
Bandwidth (MB/sec) 133 12.5

Figure 9. NCAC Taurus scalability.

Therefore, this experiment was able to demonstrate the importance of the role of
communication in the performance of the domain decomposition version of LS-DYNA.

As expected, the results for one and two processors (see Figures 8-12) are very close, since at
this processor count all calculations reside on one node of the RS/6000 SP system or one
workstation, and there is no communication between nodes.

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 4 8 16 32

Processors

E
la

ps
ed

T
im

e
(s

ec
)

RS/6000 SP
Workstation cluster

17-12

Figure 10. Customer 100,000 element model scalability.

Figure 11. NCAC Neon scalability.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

1 2 4 8 16 32

Processors

E
la

ps
ed

T
im

e
(s

ec
)

RS/6000 SP

Workstation cluster

0

1000

2000

3000

4000

5000

6000

7000

1 2 4 8 16 32

Processors

E
la

ps
ed

T
im

e
(s

ec
)

RS/6000 SP

Workstation cluster

17-13

Figure 12. Stamp-141 scalability.

When using four processors, the slower ethernet communication causes a slight increase in the
overall elapsed time of the jobs, but many users should find this an attractive and economical
way to utilize their computer resources.

In order to gather data with convenient elapsed times, the larger simulations in this study were
shortened in duration. One possible explanation of the results is that the communication
characteristics would change as the simulation progresses, where contact plays a more
important role. Therefore, the metalforming and 100,000 element crash simulations were both
run to completion. A comparison of the elapsed times shows that even for the full simulations,
the workstation cluster is only 3% slower than the RS/6000 SP system, so the partial simulation
results are valid in comparing timings.

Partitioning Study with some Automotive Crash Input Decks
The three largest representative crash simulation input decks were run using various settings
for partitioning, to determine the effect on performance. The results are summarized in Figures
13-15. These bar charts show how the elapsed times of the jobs change for various numbers of
processors, for both default partitioning and partitioning using options such as:

decomposition (expdir 2 expsf 10.0 silist 1,2)

0

1000

2000

3000

4000

5000

6000

1 2 4 8 16 32

Processors

E
la

ps
ed

T
im

e
(s

ec
)

RS/6000 SP

Workstation cluster

17-14

Figure 13. Partitioning effects on the NCAC Taurus model.

Figure 14. Partitioning effects on the 100,000 element customer model.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 4 8 16 32

Processors

E
la

ps
ed

T
im

e
(h

r)

Default Partitioning
Custom Partitioning

0
2
4
6
8

10
12
14
16
18
20

1 2 4 8 16 32

Processors

E
la

ps
ed

T
im

e
(h

r)

Default Partitioning

Custom Partitioning

17-15

Figure 15. Partitioning effects on the NCAC Taurus input deck.

Two general trends concerning usage of these partitioning options can be observed from the
performance data:

1. Customized partitioning does improve performance when using 4 or 8 processors.
2. Customized performance degrades performance when using 16 or more processors.

The most significant performance change is observed for the 100,000 element model, where
customized partitioning with 4 processors improves the performance from 7.03 hours to 5.16
hours elapsed time, a gain of 36%.

SUMMARY

For stamping simulations, it is prudent to follow the recommended partitioning settings
described in the LS-DYNA Users’ Manual. This has been show to provide a faster and more
robust solution. For automotive crash simulations using up to 8 processors, partitioning with
the silist, expdir, and expsf options can improve performance, up to 36% for one of the
examples studied here. For 16 or more processors, default partitioning provides better
performance than customized partitioning.

ACKNOWLEDGEMENTS

Many people and organizations contributed to this effort. Particular thanks go to the following:

Volvo Car Corporation - Olofstrom stamping group, for use of the stamping input decks
NCAC - for use of the public domain Taurus and Neon crash simulation input decks
WPI - for use of the public domain rigid pole input deck
LSTC - for overall assistance, guidance, and provision of required binaries and license files

0

5

10

15

20

25

30

35

40

45

50

1 2 4 8 16 32

Processors

E
la

ps
ed

T
im

e
(h

r)

Default Partitioning

Custom Partitioning

17-16

