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ABSTRACT

With increasingly powerful computational resources at our disposal, it is becoming common-
place to use analytical predictions in lieu of experimentation for characterization of physical
systems and events. This trend, with its perceived potential for reducing costs, is the basis for
the simulation-based procurement initiatives currently gaining momentum within the Gov-
ernment and industry. However, a simulation-based approach is often sold to decision-makers
via plausible visualizations of model simulation results; the simulations themselves having
only been validated in an ad hoc manner using anecdotal comparisons with real events. Ex-
perience has shown that, while simulation using physics-based models may lead toqualita-
tively correctresults, there can be largequantitative discrepanciesbetween simulation and
experimental results for a given physical event, and between simulation results from different
analysts for the same event. Obviously, for simulation-based procurement to be a viable alter-
native to more traditional test-based procurement, the quantitative accuracy of the simulations
must be insured. To do this requires at least a modicum of experimental data (perhaps at the
component or subsystem level) to serve as a yardstick with which the accuracy of simulation
results can be measured. And it requires minimizing the differences between corresponding
analytical and experimental results in physically meaningful ways, as well as characterizing
the ability of the models to predict future events. This paper describes a toolbox for the vali-
dation of nonlinear finite element models. The toolbox includes tools for quantitatively up-
dating model parameters based on the differences between test results and analytical predic-
tions, as well as estimating the predictive accuracy of the model based on generically similar
comparisons. Use of the toolbox is illustrated for aDYNA model of a reinforced concrete
wall subjected to blast loading.

INTRODUCTION

The Defense Threat Reduction Agency (DTRA) has promoted the verification and validation
of nonlinear dynamic codes and models for many years. Numerous precision tests have been
conducted over the years to support this effort, leading to codes such as SHARC (Hikida, et
al., 1988), AUTODYN (Century Dynamics, 1989), andDYNA3D (Whirley and Engleman,
1993) that generate high fidelity physics-based (HFPB) models of explosive loads on struc-
tures and of structural response to those loads in terms of structural damage and residual
strength. The purpose of verification and validation is to confirm the stability and accuracy of
numerical algorithms and the behavior of material models under controlled conditions, so that
the codes may be used with greater confidence to extrapolate limited test experience to a
range of practical applications. The difficulty with this approach has been the lack of a coher-
ent methodology and computational tools for its implementation, especially tools for model-
test correlation, model updating, and predictive accuracy assessment.

The organization of the tools developed under this project is shown in Figure 1. The model-
test correlation portion includes tools for statistical analysis of the differences between model
predictions and test measurements based on difference analysis or principal component com-
parisons. The model updating section includes tools for parameter sensitivity analysis, pa-
rameter effects analysis, and response surface modeling. It also includes tools for the genera-
tion of surrogate models, as well as various continuous and discrete parameter estimation
algorithms. The predictive accuracy assessment portion includes a tool for evaluating model-
ing uncertainty based on principal components derived from analysis and test data, and a tool
for propagating these statistics through models to evaluate their predictive accuracy. Tools for
preparation of data for these analyses are also included.
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Figure 1. Design for Nonlinear Model Validation Toolbox

APPROACH

The tools for model validation are based on principal components analysis of model predic-
tions and experimental measurements. Principal components analysis facilitates comparisons
of data useful for model-test correlation and uncertainty analysis. It also provides a simple
means of generating local, surrogate models useful for parameter estimation with computa-
tionally intensive finite element models.

Principal Components Analysis
Principal components analysis is based on the singular value decomposition (SVD) of a col-
lection of time-histories (Klema and Laub, 1980). Let( )x t denote a response time-history,
where x may be displacement, velocity, or any time-dependent quantity of interest. A re-
sponse matrix,X, is a collection of discretized time-histories,

( ) ( )

( ) ( )

1 1 1

1

n

m m n

x t x t

X

x t x t

� �
� �= � �
� �� �

�

� � �

�

(1)

where each row corresponds to either a different measurement location or set of physical pa-
rameters, and each column corresponds to response at a specific time. The SVD ofX may be
written

TX U V= Σ (2)

whereU is an orthonormalm m× matrix whose columns are the left singular vectors ofX, Σ
is an m n× matrix containing the singular values ofX along the main diagonal and zeros else-
where, andV is an n n× orthonormal matrix whose columns correspond to the right singular
vectors ofX.
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The matrices on the right hand side of (2) may be partitioned so that
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whereD is the diagonal matrix of nonzero singular values,id ( 1, , min( , )i p m n= ≤� ), φ
and η are the matrices of left and right principal vectors, respectively, corresponding to the
nonzero singular values, andφ⊥ and η⊥ span the orthogonal complements of the respective
subspaces spanned byφ andη . By (3),

X Dφ η= (4)

The columns (rows) ofφ (η ) are pairwise orthonormal, i.e.,

T T
pIφ φ ηη= = (5)

where pI is thep-dimensional identity matrix. The factorization given by (4) is called the
principal components decomposition (PCD) of the response matrix (Hasselman, Anderson,
and Gan, 1998).

Model-Test Correlation
Principal components methods are useful for nonlinear model-test correlation for the same
reason that modal properties are useful in linear structural dynamics. In nonlinear models,
however, the interpretation of these “modal” properties depends on the selection of response
data included in ( )X t . Nevertheless, there are certain properties of the PCD that can be ex-
ploited for purposes of model-test correlation. These properties are suggested by the follow-
ing equations:

0 Tψ φ φ= (6a)

0D D D∆ = − (6b)

0 Tv η η= (6c)

where 0φ , 0D , and 0η represent “modal” parameters derived from analysis for comparison
with the corresponding “modal” parameters, ,Dφ andη derived from experimental data.

Model Updating
The PCD furnishes a compact representation of the response of a nonlinear model. The scaled
right principal vectors, i idη , represent the response time-histories of the principal compo-
nents. Each row of the left principal vector matrix,φ , denotes the specific linear combination
of the principal component response time-histories which reproduces the total response time-
history at the corresponding value of the parameter vector,θ , and spatial location of the re-
sponse.

For example, when each row of the response matrix corresponds to the response at a single
location and a unique set of parameters, then each left principal vector can be considered as a
function of the parameter vector only. If the left principal vectors are considered as functions
of the parameter vector,θ , then ( ; )x t θ may be approximated by
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where the columns of ˆ( )φ θ , ˆ ( )jφ θ , are represented by individual response surfaces
(Hasselman, Anderson, and Zimmerman, 1998).

Consequently, one may define a Bayesian objective function of the form

( ) ( ) ( ) ( )0 1 0 1ˆ ˆ
T T

o oJ x x S x x Sεε θθθ θ θ θ− −= − − + − − (8)

whereθ and oθ represent the current and initial estimates of the variable parameter vectors,
respectively, andx and 0x̂ represent the measured and currently predicted responses, respec-
tively. The covariance matricesSθθ and Sεε represent uncertainties in the initial parameter
estimates and response measurements, respectively. Bayesian estimation provides a revised
covariance matrix of the updated parameter estimates given by

( ) 1* 1 1T
x xS S T S Tθθ θθ θ εε θ

−− −= + (9)

where xT θ is the sensitivity matrix, /x θ∂ ∂ , relating the response vector to the parameter vec-
tor.

Uncertainty Analysis
When the principal components approach is used to represent a nonlinear model, the parame-
ters areφ , D, andη , and modeling uncertainty is defined in terms of these parameters. Once
a covariance matrix of the modal parameters is obtained, it can be transformed to obtain a
covariance matrix of the response variables. The predictive accuracy of the model is thereby
determined (Hasselman, Chrostowski, and Ross, 1992, and Anderson, Gan, and Hasselman,
1998).

A first order approximation of the experimental response matrix is given by
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where the parameter,krp , is taken to represent any of the elements of the matricesψ , Dp , or
ν , 0/ Trace( )D D D=p , and mpN denotes the number of modal parameters collectively con-
tained inψ , Dp , andν . Here kr∆ p is an element of the vectorr∆ p with
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where Iψ ψ∆ = − , 0( ) / Trace( )oD D D D∆ = −p , and Iν ν∆ = − . The derivative of ijX with
respect to krp is
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Equation (10) has a particularly simple form when the matrix,X∆ , is also vectorized as
vec( )u X∆ = ∆ ,

uru T r∆ = ∆
p

p (13)

where the elements ofurT
p

are populated by the scalar values given in (12).

The covariance matrix of the vectorrp is given by
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where the index,i, is on a particular data set consisting of corresponding analysis-test pairs,N
is the total number of data sets in the sample, and the analytical model is assumed to predict
mean response. When the analytical model contains bias-type error, as may be indicated when
replicate test measurements are available, then
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where rµ∆p

is the mean of the vector .r∆ p

rrS
pp

represents the generic modeling uncertainty inherent in analytical predictions of the re-
sponse matrix,X, based on normalized comparisons of previous analysis and test data. In or-
der to evaluate the predictive accuracy of a new response prediction, Equation (13) is used,
with the understanding thaturT

p

is evaluated with respect to the new model, i.e., the values of
0φ , 0D , and 0η representing the modal parameters of thenewmodel, rather than those of the
models that have been correlated with previous test data. Then
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(16)

DISCUSSION OF RESULTS

To illustrate these concepts the parameters of a complex, nonlinear system model were up-
dated using available test data. The physical scenario for the example is depicted in Figure 2a
and consists of a three-room, buried, reinforced concrete structure subjected to blast loading
in the center room. Experimental measurements included blast overpressures inside the room
and accelerations of the two interior walls. Accelerations were integrated to obtain displace-
ments.

The corresponding model shown if Figure 2b was a quarter-symmetry, nonlinear finite ele-
ment model. This model consisted of approximately 80,000 continuum elements for the con-
crete and surrounding soil, and roughly 20,000 structural beam elements for the steel rein-
forcement. A cold joint near the bottom of the interior wall was explicitly modeled. The mate-
rial models contained dozens of parameters, many of which were candidates for estimation.
Since the loading was distributed and available input measurements were few, an intermedi-
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ate input model was required. This model was a computational fluid dynamics model of the
interior room pressure. A preliminary validation of the input model was performed by a third
party using available pressure data.

(a) Physical scenario (without soil) (b) HFPB quarter-symmetry model

Figure 2. Example Problem

The pre-update predictive accuracy of the model is illustrated in Figure 3. The predicted and
measured responses at the center of the wall are shown, along with2σ± uncertainty bands.
These bands were based on an unbiased estimate of the measurement uncertainty for the cen-
ter wall response using principal components analysis. Note that the measured response gen-
erally falls within the uncertainty bands, but that the bands fail to capture the experimental
behavior in the neighborhood of 0.002 seconds.
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Figure 3. Pre-Update Predictive Accuracy

The estimation problem consisted of using measurements of the displacement of the interior
wall to update some of the concrete and steel material parameters so that the predicted re-
sponse matched the test data. Measurements used for estimation included sampled displace-
ment histories at four locations on the wall. Estimation parameters were chosen by a three-
stage process comprised of engineering judgement, sensitivity analysis, and parameter effects
analysis. The results of this process indicated that the concrete strain rate enhancement and
shear dilatancy, the steel reinforcement tensile strength, and the cold joint friction were the
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most significant parameters. Since the input model was tentatively validated, input parameters
were excluded from consideration for the initial estimation.

Numerous attempts to produce meaningful parameter estimates were made. The results of a
typical attempt are shown for the center wall response in Figure 4. Figure 4a indicates that the
revised model is noticeably worse than the nominal model with respect to the details of the
response prediction. Figure 4b illustrates the quality of the parameter estimates.
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Figure 4. Results of the Initial Estimation

The statistics of the initial parameter estimates are given in Table 1. Even though the posterior
variances of the estimates are smaller than the prior variances, the posterior correlation matrix
contains some large off-diagonal elements. Using an absolute correlation of 0.25 as a measure
of significance implies that the concrete strain rate enhancement is correlated with the tensile
strength of the steel reinforcement and the cold joint friction. An even higher degree of cor-
relation can be noted between the concrete shear dilatancy and the steel reinforcement
strength. These results are clearly unacceptable.

Table 1. Initial Prior and Posterior Estimate Statistics

Parameter Concrete
Strain
Rate
Enhance.

Steel
Rein.
Tensile
Strength

Concrete
Shear
Dilatancy

Cold
Joint
Friction

Symbol
1θ 2θ 3θ 4θ

Prior Est. 0.0289 64,000 0.500 0.200
Posterior Est. 0.0434 60,273 0.531 0.339
Prior Var. 1.06x10-4 1.60x107 2.25x10-2 1.89x10-2

Posterior Var. 6.51x10-5 1.53x106 4.46x10-3 3.18x10-3

1θ 1 0.388 -0.231 -0.597

2θ 1 -0.924 -0.148

2θ 1 -0.222

Posterior
Corr.
Matrix

4θ (Sym.) 1

After initial parameter estimation attempts failed, all available auxiliary information was re-
viewed to determine if it could be used to eliminate one or more of the parameters. This in-
formation included tensile test results for the steel reinforcement, as well as post-test meas-
urements of the slip across the cold joint. Twenty-five independent measurements of the
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strength of steel reinforcing bars from the same batch used to construct the test structure were
available. The results of these tests indicated that the prior value of the reinforcement strength
was accurate, and this parameter was eliminated from further consideration. The measured
cold joint slip was matched by the nominal model prediction, indicating that the cold joint
friction may be a candidate for elimination.

Before proceeding with additional estimation attempts, the input model was reviewed to de-
termine if any adjustments were required. Figure 5 compares the pressure and cumulative
impulse measurements and predictions at one of the pressure gage locations. With the excep-
tion of the peak of the initial pulse, the predicted pressure history matched the data well, as
indicated in the upper plot of the figure. However, the cumulative impulse data differed sig-
nificantly from the model prediction, as shown in the lower plot. Simply scaling the predicted
initial pulse by a factor of 0.6 rectified the problem at all locations for which data were avail-
able, as indicated in the figure. Similar scaling was applied to all inputs to the finite element
model.
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Figure 5. Input Model Update

The final estimation process began by using the revised input model to generate a new model
prediction. This indicated that the cold joint friction had to be reduced to a lower level (0.05)
so that the cold joint slip was accurately modeled. The finite element model was then used to
generate the new nominal prediction using the revised inputs and cold joint friction. Parame-
ter estimates were generated using the two remaining parameters, the concrete strain rate en-
hancement and shear dilatancy. The results of these efforts indicated that the shear dilatancy
should not be revised even though the posterior correlation between the two parameters was
high. The final estimation attempt used only the strain rate enhancement, with the dilatancy
fixed at its nominal value.
The final estimated value of the strain rate enhancement parameter was 0.0158, or about 55
percent of the original nominal value. The posterior variance estimate was two orders of
magnitude less than the prior estimate. The results of the final estimation process are illus-
trated in Figure 6. Figure 6a compares the measured displacement history at the center of the
wall with that predicted by the model with the original nominal, modified nominal, and re-
vised value of the parameters. Similar comparisons were made at other locations where data
were available. The results clearly indicated that the revised model not only matched the data
very well in a mean square sense, but also captured the character of the data significantly
better than the original nominal model. Figure 6b shows the high quality of the parameter
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estimate. Therefore, one is led to conclude that the estimated parameter values are likely to
provide accurate predictions for future analyses using the same materials.
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Figure 6. Results of the Final Estimation

Figure 7 depicts the pre-update predictive accuracy of the model. As before, the predicted and
measured responses at the center of the wall are shown, along with2σ± uncertainty bands.
Note that the measured response falls completely within the uncertainty bands.
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Figure 7. Post-Update Predictive Accuracy

SUMMARY

The principal components-based nonlinear model validation methodology summarized in this
paper provides a means of systematically comparing model predictions with available data
and updating model parameters to increase the fidelity of response predictions. This is a vast
improvement over traditional ad hoc techniques. Included in the methodology are tools for
evaluating the statistical significance and consistency of the parameter estimates, and the pre-
dictive accuracy of the updated model. These tools enable the analyst to confirm that the es-
timated parameter values are statistically meaningful, a prerequisite for true model improve-
ment, and to quantify the degree of uncertainty associated with model simulations, based on
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structure-specific precision test data if replicate measurements are available, or historical data
from generically similar structures and tests if they are not.

Application of the methodology to the air blast response of a reinforced concrete wall demon-
strated statistical parameter estimation and predictive accuracy evaluation of a nonlinear
HFPB model. Principal components analysis was instrumental in generating the fast-running
approximate model used for function approximation in the nonlinear Bayesian parameter es-
timation, and as a means for quantifying modeling uncertainty in the evaluation of predictive
accuracy. The same computational tools are currently being applied to other problems in-
volving weapon-target interaction.
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