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abstract

The simulation of rubber materials is becoming increasingly 
important in automotive crashworthiness simulations. 

Although highly sophisticated material laws are available in 
LS-DYNA to model rubber parts, the determination of material 

properties can be non-trivial and time consuming. In many 
applications, the rubber component is mainly loaded uniaxially

at rather high strain rates. In this paper a simplified material
model for rubber is presented allowing for a fast generation of 

input data based on uniaxial static and dynamic test data. 
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Mechanical behaviour of rubber

• Nearly incompressible

• hyperelastic under quasistatic loading

• highly rate-dependent under dynamic 
loading
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Numerical simulation

• Quasistatic hyperelastic response : best fit 
for the Ogden functional based on uniaxial
tension, simple shear and biaxial testing

• Dynamic viscoelastic response : best fit for 
a generalized Maxwell model 

• Example of implementation : MAT_77 
(Ogden or general hyperelastic)  in LS-
DYNA

Practical problems :

• Very often, only uniaxial tensile and/or 
compressive test results are available

• Parameter fitting can be difficult and time 
consuming

• Sometimes dynamic response cannot be 
fitted by a generalized Maxwell model
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MAT_SIMPLIFIED_RUBBER

• A pragmatic and simplified alternative is 
proposed

• Ogden functional is computed from uniaxial
tensile and compressive data only (fit is 
exact)

• Viscoelastic approach is replaced by rate-
dependent hyperelasticity

• Incompressibility is assumed

MAT_SIMPLIFIED_RUBBER

• Implemented in LS-DYNA v970 as 
MAT_181 in December 2002 

• Tested extensively in a number of industrial 
simulation projects since
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MAT_181 : user input for 
quasistatic response

SGL Specimen gauge length

SW Specimen width

ST Specimen thickness

LC/TBID Load curve or table ID,
defining force versus
actual change in gauge
length

If
SGL=1 and
SG=ST=1
then
engineering
stress/strain curves
are input

MAT_181 : user input
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User must provide
full range of data taking
incompressibility into
account :
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MAT_181 : user input
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To avoid localisation, negative slopes in the true stress versus
true strain curve should be avoided, thus :

Some theory :

• MAT_SIMPLIFIED_RUBBER will 
reproduce the quasistatic uniaxial tension
and compression tests exactly, no fit is done

• Under quasistatic arbitrary 3D loading the 
response of MAT_SIMPLIFIED_RUBBER 
is identical to MAT_OGDEN based on 
parameters that would allow an exact fit of 
the uniaxial test results 
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Some theory : Ogden model
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Ogden
functional
depends on
principal
stretch ratios

true stress

Expression for true stress :
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Generalisation :
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Some theory : simplified model
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Principal strain follows from principal stretch ratio
f is evaluated from the tabulated uniaxial engineering
stress/strain data

Comparison of material laws for 
rubber in LS-DYNA :

Single element
tests for 4 basic
loadcases

compare MAT_77,
MAT_77 with fit
and MAT_181
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Comparison of material laws for 
rubber in LS-DYNA :

Uniaxial response
is identical for all
3 models

least squares fit
is also very close

Comparison of material laws for 
rubber in LS-DYNA :

Hydrostatic and shear response of MAT_181 are equivalent
to the Ogden model
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MAT_181 follows test curve :

Some test
curves may be
hard to fit with
an Ogden-type
functional

MAT_181 : user input for 
dynamic response

TENSION 0=rate effects only in
loading
1= rate effects in loading
and unloading

RTYPE 0=true strain rate
1=engineering strain rate

AVGOPT 0=simple average
1=running average
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Treatment of rate effects :

Fixed
velocity

5 brick elements of different
height are compressed about
50% using the same loading
velocity

Effect of TENSION :

TENSION=0                                        TENSION=1
rate effect only in loading                    rate effect also in unloading

rate dependent hyperelasticity shows no exponential stress relaxation
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Effect of AVGOPT :

AVGOPT=0                                        AVGOPT=1
simple 12 point average                      running average of strain rate 
of strain rate

Effect of RTYPE :

RTYPE=0 RTYPE=1
true strain rate engineering strain rate
test results hard to obtain                     test results at constant speed
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Practical choices :

• Rate dependent hyperelasticity is not as 
physical as viscoelasticity

• some formulation choices must be made by 
the user

• in our applications, we have used 
TENSION=0, RTYPE=1 and AVGOPT=1

Applications :

• Application examples include :
– assembly adhesives (rubber-based)

– MVSS-201 head impactor skin

– pedestrian head impactor skin
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Future developments :

• Implementation of MAT_181 for shell 
elements

• Application on a  PVB windshield 
interlayer, previous simulation work 
regarding this material has been presented 
in the 11th international workshop of 
computer aided mechanics of materials, 
September 2002

Conclusions :

• With MAT_181 no parameter identification 
is necessary if uniaxial test results are 
available

• Highly nonlinear rate effects can be 
considered in the model

• Elastic oscillations sometimes cause 
instabilities, viscous hourglass control is 
recommended
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