A simplified approach to the simulation of rubber-like materials under dynamic loading

Paul A. Du Bois consulting engineer Freiligrathstraße 6 63071 Offenbach/Main fax +49-69-85703931 paul.dubois@gmx.net

abstract

The simulation of rubber materials is becoming increasingly important in automotive crashworthiness simulations. Although highly sophisticated material laws are available in LS-DYNA to model rubber parts, the determination of material properties can be non-trivial and time consuming. In many applications, the rubber component is mainly loaded uniaxially at rather high strain rates. In this paper a simplified material model for rubber is presented allowing for a fast generation of input data based on uniaxial static and dynamic test data.

A simplified approach to the simulation of rubber-like materials under dynamic loading

Implementation of MAT_181 in LS-DYNA

Paul A. Du Bois European LS-DYNA conference, 22-23 May, 2003

Mechanical behaviour of rubber

- Nearly incompressible
- hyperelastic under quasistatic loading
- highly rate-dependent under dynamic loading

Numerical simulation

- Quasistatic hyperelastic response : best fit for the Ogden functional based on uniaxial tension, simple shear and biaxial testing
- Dynamic viscoelastic response : best fit for a generalized Maxwell model
- Example of implementation : MAT_77 (Ogden or general hyperelastic) in LS-DYNA

Practical problems :

- Very often, only uniaxial tensile and/or compressive test results are available
- Parameter fitting can be difficult and time consuming
- Sometimes dynamic response cannot be fitted by a generalized Maxwell model

MAT_SIMPLIFIED_RUBBER

- A pragmatic and simplified alternative is proposed
- Ogden functional is computed from uniaxial tensile and compressive data only (fit is exact)
- Viscoelastic approach is replaced by ratedependent hyperelasticity
- Incompressibility is assumed

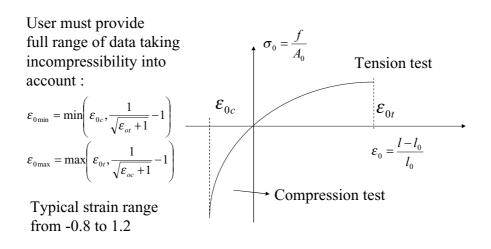
MAT_SIMPLIFIED_RUBBER

- Implemented in LS-DYNA v970 as MAT_181 in December 2002
- Tested extensively in a number of industrial simulation projects since

MAT_181 : user input for quasistatic response

SGL	Specimen gauge length	
SW	Specimen width	If SGL=1 and SG=ST=1 then engineering stress/strain curves are input
ST	Specimen thickness	
LC/TBID	Load curve or table ID, defining force versus actual change in gauge length	

MAT_181 : user input



MAT_181 : user input

To avoid localisation, negative slopes in the true stress versus true strain curve should be avoided, thus :

compression : $\frac{\partial \sigma}{\partial \varepsilon_{0}} = \frac{\partial \sigma_{0}(1 + \varepsilon_{0})}{\partial \varepsilon_{0}} = \frac{\partial \sigma_{0}}{\partial \varepsilon_{0}}(1 + \varepsilon_{0}) + \sigma_{0} > 0$ tension : $\frac{\partial \sigma_{0}}{\partial \varepsilon_{0}} > 0$

Some theory :

- MAT_SIMPLIFIED_RUBBER will reproduce the quasistatic uniaxial tension and compression tests exactly, no fit is done
- Under quasistatic arbitrary 3D loading the response of MAT_SIMPLIFIED_RUBBER is identical to MAT_OGDEN based on parameters that would allow an exact fit of the uniaxial test results

Some theory : Ogden model

$$W = \sum_{i=1}^{3} \sum_{j=1}^{n} \frac{\mu_{j}}{\alpha_{j}} (\lambda_{i}^{*\alpha_{j}} - 1) + K(J - 1 - \ln J)$$

 $\lambda_i^* = \lambda_i J^{-1/3} = rac{\lambda_i}{J^{1/3}} \qquad J = \lambda_1 \lambda_2 \lambda_3 = rac{V}{V_0}$

Ogden functional depends on principal stretch ratios

$$\sigma_i = \sum_{j=1}^n \frac{\mu_j}{J} \left[\lambda_i^{*\alpha_j} - \sum_{k=1}^3 \frac{\lambda_k^{*\alpha_j}}{3} \right] + K \frac{J-1}{J}$$

true stress

Expression for true stress :

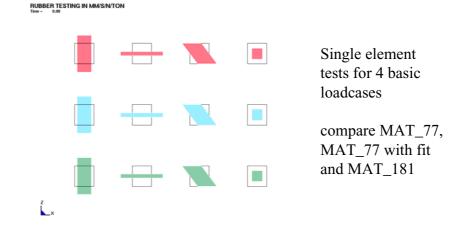
$$\sigma_{i} = \sum_{j=1}^{n} \frac{\mu_{j}}{J} \left[\lambda_{i}^{*\alpha_{j}} - \sum_{k=1}^{3} \frac{\lambda_{k}^{*\alpha_{j}}}{3} \right] + K \frac{J-1}{J}$$
Generalisation :
f need not be
polynomial
$$f(\lambda) = \sum_{j=1}^{n} \mu_{j} \lambda^{*\alpha_{j}}$$
Polynomial
function
$$\sigma_{i} = \frac{1}{J} \left(f(\lambda_{i}) - \frac{1}{3} \sum_{j=1}^{3} f(\lambda_{j}) \right) + K \frac{J-1}{J}$$

f

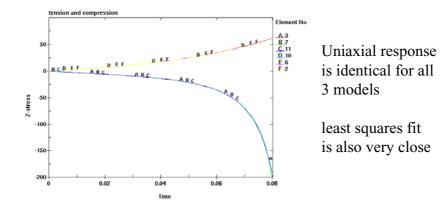
Some theory : simplified model $\varepsilon_{oi} = \lambda_i - 1$ $f(\lambda_i) = \lambda_i \sigma_0(\varepsilon_{0i}) + \sum_{n=1}^{\infty} \lambda_i^{(-1/2)^n} \sigma_0(\lambda_i^{(-1/2)^n} - 1)$ $for _ : _ |\lambda_i^{(-1/2)^n} - 1| \le 0.01$

Principal strain follows from principal stretch ratio f is evaluated from the tabulated uniaxial engineering stress/strain data

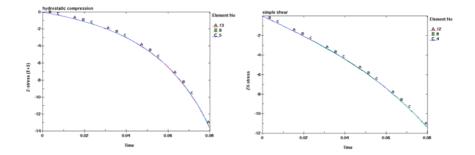
Comparison of material laws for rubber in LS-DYNA :



Comparison of material laws for rubber in LS-DYNA :

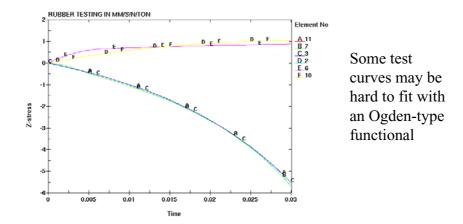


Comparison of material laws for rubber in LS-DYNA :



Hydrostatic and shear response of MAT_181 are equivalent to the Ogden model

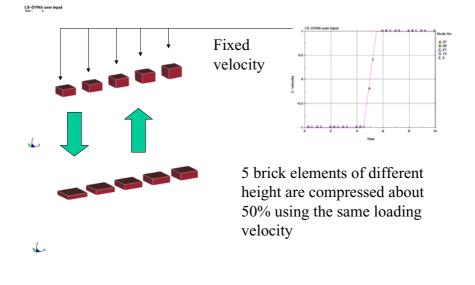
MAT_181 follows test curve :



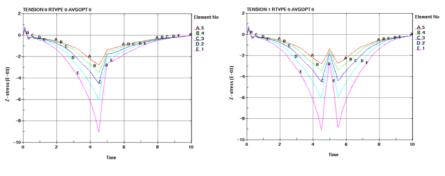
MAT_181 : user input for dynamic response

TENSION	0=rate effects only in	
	loading	
	1= rate effects in loading	
	and unloading	
RTYPE	0=true strain rate	
	1=engineering strain rate	
AVGOPT	0=simple average	
	1=running average	

Treatment of rate effects :



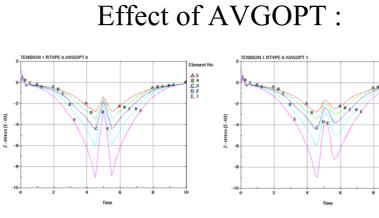
Effect of TENSION :



TENSION=0 rate effect only in loading

TENSION=1 rate effect also in unloading

rate dependent hyperelasticity shows no exponential stress relaxation

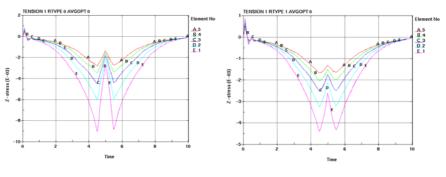


AVGOPT=0 simple 12 point average of strain rate

AVGOPT=1 running average of strain rate

A 5 B 4 C 3 D 2 E 1

Effect of RTYPE :



RTYPE=0 true strain rate test results hard to obtain

RTYPE=1 engineering strain rate test results at constant speed

Practical choices :

- Rate dependent hyperelasticity is not as physical as viscoelasticity
- some formulation choices must be made by the user
- in our applications, we have used TENSION=0, RTYPE=1 and AVGOPT=1

Applications :

- Application examples include :
 - assembly adhesives (rubber-based)
 - MVSS-201 head impactor skin
 - pedestrian head impactor skin

Future developments :

- Implementation of MAT_181 for shell elements
- Application on a PVB windshield interlayer, previous simulation work regarding this material has been presented in the 11th international workshop of computer aided mechanics of materials, September 2002

Conclusions :

- With MAT_181 no parameter identification is necessary if uniaxial test results are available
- Highly nonlinear rate effects can be considered in the model
- Elastic oscillations sometimes cause instabilities, viscous hourglass control is recommended

Acknowledgement

- This work was highly supported by DaimlerChrysler, Sindelfingen
- Thanks to Thomas Frank, Stefan Kolling, Jens Riedel, Axel Fedeler, Thomas Linder, & Andreas Hirth

Material I

4th European LS-DYNA Users Conference