A Quadratic Pipe Element in LS-DYNA®

Tobias Olsson, Daniel Hilding
DYNAmore Nordic AB

1 Background

Analysis of long piping structures can be challenging due to the enormous number of shell/solid elements that would be required to model a piping structure accurate. In that context a new beam element has been developed that can, if used correctly, reduce the number of elements used in a pipe simulation. Since it is constructed of 3 nodes it is perfect for describing pipe bends, so called elbows.

This document is meant as an introduction and modelling techniques for the elbow element. It is implemented in LS-DYNA® R7.0.0 but improvements are implemented in the coming update of LSDYNA R7 [1].

2 Theory

The main theory is based on the work done by Almeida [2] The beam is formulated under the plane stress assumption and with thin shell theory. That means that the quotient between the thickness of the tube (t) and the outer radius (a) should be small and the quotient between the radius and the pipe curvature (R) should also be small.

$$
\begin{equation*}
\frac{t}{a} \ll 1, \frac{a}{R} \ll 1 \tag{1}
\end{equation*}
$$

The basic assumption is that plane sections originally normal to the center line remain plane but not necessarily normal. The following displacement formula holds for a point in the element after deformation
$u_{i}(r, s, t)=\sum_{k=1}^{3} h_{k}(r) u_{i}^{k}+\sum_{k=1}^{3} a_{k} h_{k}(r)\left(t V_{t i}^{k}+s V_{s i}^{k}\right), i=1,2,3$

Where r, s, t are iso-parametric coordinates, u_{i} is the displacement at any point in the pipe element, h_{k} is the interpolation function and u_{i}^{k} is the displacement of node k in the current element. The $V_{t i}^{k}$ and $V_{s i}^{k}$ are the components of the rotated orientation vectors along the t and s directions, and a_{k} is the outer pipe radius. We calculate \boldsymbol{V}_{s}^{k} and \boldsymbol{V}_{t}^{k} as the cross product between the nodal rotation increment and the "old" orientation vector.
$\boldsymbol{V}_{s}^{k}=\Delta \boldsymbol{\theta}^{k} \times \boldsymbol{V}_{s 0}^{k}$

$$
\begin{equation*}
\boldsymbol{V}_{t}^{k}=\Delta \boldsymbol{\theta}^{k} \times \boldsymbol{V}_{t 0}^{k} \tag{3}
\end{equation*}
$$

The current beam displacements assume that the cross section of the pipe does not deform. To include the ovalization to the formulation we introduce a new displacement field as follows
$w(r, \phi)=\sum_{m=1}^{3} \sum_{k=1}^{3} h_{k}(r)\left(c_{m}^{k} \sin 2 m \phi+d_{m}^{k} \cos 2 m \phi\right)$

Where c_{m}^{k} and d_{m}^{k} are generalized ovalization displacements. The total displacement is calculated as the sum of u and w which give the beam a total of 12 degrees of freedom per node.

Almeida's theory is here enhanced with the possibility to include an inner pressure to for example simulate inner or outer loads such as gas pressure or water pressure due to sub sea placement. The inner pressure works two ways. First it works to stiffen the pipe against bending, i.e., reduces the ovalization displacements. Secondly, it adds stress in the axial and circumferential directions by using simple linear pipe equations. The stresses that are transferred and added to the materials are given by:

Straight pipe

$\sigma_{r}=\frac{P a_{m}}{2 t}, \sigma_{\text {circ }}=\frac{P a_{m}}{t}$

Curved pipe

$\sigma_{r}=\frac{P a_{m}}{2 t}, \quad \sigma_{\text {circ }}=\frac{P a_{m}}{2 t} \frac{2 R-a_{m} \cos \phi}{R-a_{m} \cos \phi}$,
where P is the applied pressure, a_{m} is the mean radius of the tube, R is the pipe curvature radius and t is the pipe thickness.

Fig. 1: Illustration of a pipe beam element, $\boldsymbol{r}, \boldsymbol{s}$ and \boldsymbol{t} are position vectors, $\boldsymbol{a}_{\boldsymbol{m}}$ is the mean radius of the tube, R is the pipe curvature radius and t is the wall thickness.

3 Modelling

The pipe element is constructed of three nodes and an orientation node. And the layout of the pipe is to interpolate a quadratic function through the nodes. The bends should be modeled as circular arcs. The orientation vectors are always constructed such that \boldsymbol{t} is perpendicular to the pipe axis and for a curved pipe pointing at the curvature center or for a straight pipe in the same plane as the orientation node and perpendicular to the pipe axis. The curvature center is automatically calculated and it is assumed that the bend is a part of circle. If the pipe is initially curved the orientation node is set to the curvature center. If a straight pipe is used the orientation node should be set to keep continuity in the \boldsymbol{t} direction between elements.

Fig. 2: Pipe beam node orientation.

3.1 Input example (Element)

The input for a pipe element is almost identical as for an ordinary beam. The difference is that the middle node (N3) is also given on card 1 row 2. Note that the orientation node must always be included even though its coordinates are calculated internally for a curved pipe:

```
*ELEMENT_BEAM_ELBOW 
$ NODE3
    N3
```

As a rule of thumbs and for good accuracy it is recommended to use at least 4-6 elements for a 90 degree elbow.

3.2 Input example (Section)

The pipe element is activated by setting the element formulation to 14 in *SECTION_BEAM. Also an integration rule id must be given and the CST parameter should be set to 2 . Moreover, the integration rule must be tubular (9).

Physical options such as pressure and elongation effects are also given in the section keyword. The pressure is given at card 1 on row 2, the inclusion of end effects are given at card 3 on row 2 . Card 2 on row 2 is for output of the ovalization degrees of freedom, that is, c_{k} and d_{k} as an ASCII-file. Doing so it is possible to visualize the ovalization of the pipe by valuate the ovalization displacements $w(r, \phi)$. Below is an example of a section with 1 MPa as internal pressure and both ovalization printing and elongation active.

*SECTION_BEAM					
\$	SID	ELFORM	SHRF	QR/IRID	CST
	1	14	1.0	-1	2.0
\$	PR	IOVPR	IPRSTR		
	1.0E6	1	1		
*INTEGRATION_BEAM					
\$	IRID	NIP	RA	ICST	K
	1	0	0	9	0
\$	D1	D2			
	1.0	0.7			

Also, note the option NEIPB on*DATABASE_EXTENT_BINARY that control the output off the loop stresses. Right now the only option that will work is to set NEIPB to 0 (default) and use the corresponding ASCII-file to fringe plot the loop-stress. All other stresses are of course included in the d3plot file.

3.3 Ovalization degrees of freedom

The extra degrees of freedom are described by scalar nodes that are automatically created during the initialization. Unfortunately that means that the node ids are not known beforehand. However, during the generation of these extra nodes they are echoed to the messag file for easy access for the user. For example, the information can look like this:

ELBOW BEAM:	1			
n1-n3-n2:	1	2	3	
ovalization nodes:	1701	1704	1703	
	1705	1707	1706	

And it means that elbow beam id 1 that is constructed of nodes 1,2 and 3 were node 3 is the middle node, have the ovalization degrees saved in nodes 1701 to 1707 . The c_{1}, c_{2} and c_{3} for node 1,3 and 2 are stored in 1701, 1704 and 1703, and d_{1}, d_{2} and d_{3} are stored in 1705,1707 and 1706 . To simulate a cantilever beam the first node should be constrained in all DOFs. In this case that means nodes 1, 1701 and 1705.

If the IOVPR flag is set, then the ovalization displacements for each element are written to an ASCII file 'elbwov'. They can be used for further analysis of the pipe. For example the total ovalization of the pipe can be calculated by using the displacement formula above. The format for the ASCII file is as follows (spaces have been removed to fit this page):

```
OVALIZATION D.O.F. WITH PRESSURE: 1.210E+06 (TIME = 1.000000)
    BEAM ID: 1 c1 c2 c3 d2 d2 
        NODE 1: 0.35E-4 -0.49E-5 0.16E-6 -0.40E-3 -0.19E-4 -0.15E-5
        NODE 2: 0.46E-4 0.28E-5 -0.77E-7 0.36E-3 0.23E-4 0.52E-4
        NODE 3: 0.11E-3 -0.74E-5 0.14E-6 0.16E-2 -0.84E-4 0.10E-3
```

Note that the ovalization nodes only have translation degrees of freedom. That means that velocity boundary conditions cannot be set.

3.4 Contacts

Due to the extra node in this formulation the beam contacts will not work for curved beams. If a beam contact is used the curved beam will be treated as a linear beam between node 1 and 2 . Node to node contacts and node to surface contacts should work as usual but the curved beam between the nodes will not be added to the contact.

4 Examples

In LS-PrePost $\circledR 4.1$ or newer a new rendering engine is implemented that can visualize the pipes as curved beams, see Fig. 3. All that is needed is that the k-file is used together with the d3plot file and that the CST flag is set to 2 .

4.1 Two elements Cantilever beam

The first example is a simple cantilever beam that is constructed with only 2 elbow elements. The purpose is to do a comparison with the standard beam type 1 and the analytical result that is available in Almeida [2].

Fig. 3: Cantilever beam modeled with 2 elbow elements. To the left is the initial geometry and to the right is the deformed state.

The material is linear elastic with a Young's modulus at 207GPa and Poisson ratio equal to 0.0 . The applied torque is 40 kNm . The initial straight geometry is deformed by the moment and close to a halfcircle is obtained. The same simulation was done with beam type 1 and a comparison between the deformations of the loaded node was done. The result is viewed in Fig. 4 and the simulation with the type 1 beam is not able to complete this test case and is therefore not suitable for this kind of simulations.

Fig. 4: To the left is the x-displacements for the elbow (B) beam and beam type $1(A)$ shown. To the right is the y-displacements for the elbow beam (B) and beam type $1(A)$ shown.

An interpretation can be that the type 1 beam have difficulties when the y-displacements become nonlinear and as a consequence the simulation is not able to complete to the end. From Almeida [2] an analytical result can be found and a comparison is made in Fig. 5.

Fig. 5: An comparison of simulated displacements versus analytical.
As can be seen in Fig. 5 a good agreement is obtained even for this coarse 2 element mesh. Note that the type 1 beam was not able to complete the simulation.

4.2 Piping structure

The second example consists of a few pipes that undergo torsional deformations. One end is fixed and a load is applied at the other end of the structure. See Fig. 6. This example is simulated with the simplest elastic material (*MAT_001). A list of all supported materials is given in Appendix A and the complete input deck is appended in Appendix B.

Fig. 6: Initial model. Node 1 is fix and the last node is loaded in the global z-direction.
In Fig. 7 some fringe plots from the above simulation are shown.

Fig. 7: Different fringe plots. Reading from top left to bottom right: axial-stress, loop-stress, rs-stress and tr-stress.

5 Pre- and postprocessing

Support for pre- and postprocessing of the new element is available in the current, March 2013 version, of LSPrePost 4.1,

6 Summary

A new beam formulation has been developed and implemented in LS-DYNA R7. It is a 3 node beam with 36 degrees of freedom and quadratic interpolation between nodes. It is tailored for the pipeline and offshore industries but can of course be used in other suitable areas as well. It is cost efficient and accurate.

7 References

[1] Hallquist, J. "LS-DYNA R7.0.0 Keyword User's Manual - Volume I", Development version, Livermore Software Technology Corporation, revision 2999, March 29, Livermore, 2013.
[2] Almeida, C.A., "A simple new element for linear and nonlinear analysis of piping systems", PhD Thesis, MIT, 1982.

8 Appendix A

Currently supported materials (early 2013) are materials number 1, 3, 4, 6, 24,153, and 195.

9 Appendix B

The input file that was used for the second example.

*KEYWORD								
* CONTROL_TERMINATION								
\$	endtīm	endcyc	dtmin	endeng	endmas			
	1.000	0	0.0	0.0	0.0			
\$								
*DATABASE EXTENT BINARY								
10,10,36								
0,0,36								
*BOUNDARY_PRESCRIBED_MOTION_NODE								
*CONTROL_IMPLICIT GENERAL								
1, . 1								
*CONTROL_IMPLICIT_AUTO								
$1,100,10,0,0.1$								
*DEFINE_CURVE								
1000,								
0.0,0.0								
1.0,1.000								
4.0,1.000								
*DATABASE_BINARY_D3PLOT								
\$ dt lcdt								
0.01								
\$								
*NODE								
	nid			Y		z	tc	rc
	1			0.0		0.0	7	7
	2			0.0		0.0		
	3			0.0		0.0		
	5	1.05		-0.00576				
	6	1.11		-0.02284				
	7	1.16		-0.05056				
	8	1.21		-0.08787				
	9	1.24		-0.13333				
	10	1.27		-0.18519				
	11	1.29		-0.24147				
	12	1.30		-0.30000				
	201	1.30		-0.80000				
	202	1.30		-1.30000				
	13	1.30		-1.35853				
	14	1.32		-1.41481				
	15	1.35		-1.46667				
	16	1.38		-1.51213				
	17	1.43		-1.54944				
	18	1.48		-1.57716				
	19	1.54		-1.59424				
	20	1.60		-1.60000				
	22			-1.6		0.0		
	23			-1.6		0.0		
	70	0.00		-1.000		0.000		

80	1.00000	-1.30	0.000
90	1.60000	-1.30	0.000
100	2.00000	1.30	0.000
1131	2.6585	-1.5942	
1141	2.7148	-1.5772	
1151	2.7667	-1.5494	
1161	2.8121	-1.5121	
1171	2.8494	-1.4667	
1181	2.8772	-1.4148	
1191	2.8942	-1.3585	
1201	2.9000	-1.3000	
1211	2.8942	-1.2415	
1221	2.8772	-1.1852	
1231	2.8494	-1.1333	
1241	2.8121	-1.0879	
1251	2.7667	-1.0506	
1261	2.7148	-1.0228	
1271	2.6585	-1.0058	
1281	2.6000	-1.0000	
1291	2.2500	-1.0000	
1301	1.9000	-1.0000	
1311	1.8415	-0.9942	
1321	1.7852	-0.9771	
1331	1.7333	-0.9494	
1341	1.6879	-0.9121	
1351	1.6506	-0.8667	
1361	1.6228	-0.8148	
1371	1.6058	-0.7585	
1381	1.6000	-0.7000	
1391	1.6058	-0.6415	
1401	1.6228	-0.5852	
1411	1.6506	-0. 5333	
1421	1.6879	-0.4879	
1431	1.7333	-0.4506	
1441	1.7852	-0.4228	
1451	1.8415	-0.4058	
1461	1.9000	-0.4000	
1471	2.2500	-0.4000	
1481	2.6000	-0.4000	
1531	2.6585	-0.3942	
1541	2.7148	-0.3772	
1551	2.7667	-0.3494	
1561	2.8121	-0.3121	
1571	2.8494	-0.2667	
1581	2.8772	-0.2148	
1591	2.8942	-0.1585	
1601	2.9000	-0.1000	
1611	2.8942	-0.0415	
1621	2.8772	0.0148	
1631	2.8494	0.0667	
1641	2.8121	0.1121	
1651	2.7667	0.1494	
1661	2.7148	0.1772	
1671	2.6585	0.1942	
1681	2.6000	. 20000	
1691	1.3000	. 20000	
1701	0.0000	. 20000	
*PART			
\$\# title			
ELBOW PIPE			
\$\# pid* KEYWORD	secid	mid	
	45	45	
	*KEYWORD		
*ELEMENT_BEAM_ELBOW			
\$ eid ${ }^{-}$	pid n1	n2 n5	
11	451	370	
2			
*ELEMENT_BEAM_ELBOW			
\$ eid	pid n1	n2 n5	
12	453	680	
5			
*ELEMENT_BEAM_ELBOW			
\$ eid	pid n1	n2 n5	
13	456	880	
7			

	14	45	8	10	80
9					
*ELEMENT BEAM_ELBOW					
\$	eid	pid	n1	n2	n5
	15	45	10	12	80
11					
*ELEMENT_BEAM_ELBOW					
\$	eid	pid	n1	n2	n5
	6	45	12	202	90
201					
*ELEMENT_BEAM_ELBOW					
\$	eid	pid	n1	n2	n5
	16	45	202	14	90
13					
*ELEMENT_BEAM_ELBOW					
\$	eid	pid	n1	n2	n5
	17	45	14	16	90
15					
*ELEMENT_BEAM_ELBOW					
\$	eid	pid	n1	n2	n5
	18	45	16	18	90
17					
*ELEMENT_BEAM_ELBOW					
\$	eid	pid	n1	n2	n5
	19	45	18	20	90
19					
*ELEMENT_BEAM_ELBOW					
\$	eid	pid	n1	n2	n5
	110	45	20	23	100
22					
*ELEMENT_BEAM_ELBOW					
\$	eid	pid	n1	n2	n5
	111	45	23	1141	100
1131					
*ELEMENT_BEAM_ELBOW					
\$	eid	pid	n1	n2	n5
	112	45	1141	1161	100
1151					
*ELEMENT_BEAM_ELBOW					
\$	eid	pid	n1	n2	n5
	113	45	1161	1181	100
1171					
*ELEMENT_BEAM_ELBOW					
\$	eid	pid	n1	n2	n5
	114	45	1181	1201	100
1191					
*ELEMENT_BEAM_ELBOW					
\$	eid	pid	n1	n2	n5
	115	45	1201	1221	100
1211					
*ELEMENT_BEAM_ELBOW					
\$	eid	pid	n1	n2	n5
	116	45	1221	1241	100
1231					
*ELEMENT_BEAM_ELBOW					
\$	eid	pid	n1	n2	n5
	117	45	1241	1261	100
1251					
*ELEMENT_BEAM_ELBOW					
\$	eid	pid	n1	n2	n5
	118	45	1261	1281	100
1271					
*ELEMENT_BEAM_ELBOW					
\$	eid	pid	n1	n2	n5
	119	45	1281	1301	100
1291					
*ELEMENT_BEAM_ELBOW					
\$	eid	pid	n1	n2	n5
	120	45	1301	1321	100
1311					
*ELEMENT_BEAM_ELBOW					
\$	eid	pid	n1	n2	n5
	121	45	1321	1341	100
1331					
*ELEMENT_BEAM_ELBOW					
\$	eid	pid	n1	n2	n5
	122	45	1341	1361	100

*ELEMENT_BEAM_ELBOW						
\$	eid	pid	n1	n2	n5	
	123	45	1361	1381	100	
1371						
*ELEMENT_BEAM_ELBOW						
\$	eid	pid	n1	n2	n5	
	124	45	1381	1401	100	
1391						
*ELEMENT_BEAM_ELBOW						
\$	eid	pid	n1	n2	n5	
	125	45	1401	1421	100	
1411						
*ELEMENT_BEAM_ELBOW						
\$	eid	pid	n1	n2	n5	
	126	45	1421	1441	100	
1431						
*ELEMENT_BEAM_ELBOW						
\$	eid	pid	n1	n2	n5	
	127	45	1441	1461	100	
1451						
*ELEMENT_BEAM_ELBOW						
\$	eid	pid	n1	n2	n5	
	128	45	1461	1481	100	
1471						
*ELEMENT_BEAM_ELBOW						
\$	eid	pid	n1	n2	n5	
	129	45	1481	1541	100	
1531						
*ELEMENT_BEAM_ELBOW						
\$	eid	pid	n1	n2	n5	
	130	45	1541	1561	100	
1551						
*ELEMENT_BEAM_ELBOW						
\$	eid	pid	n1	n2	n5	
	131	45	1561	1581	100	
1571						
*ELEMENT_BEAM_ELBOW						
\$	eid	$\bar{p} i d$	n1	n2	n5	
	132	45	1581	1601	100	
1591						
*ELEMENT_BEAM_ELBOW						
\$	eid	pid	n1	n2	n5	
	133	45	1601	1621	100	
1611						
*ELEMENT_BEAM_ELBOW						
\$	eid	pid	n1	n2	n5	
	134	45	1621	1641	100	
1631						
*ELEMENT_BEAM_ELBOW						
\$	eid	pid	n1	n2	n5	
	135	45	1641	1661	100	
1651						
*ELEMENT_BEAM_ELBOW						
\$	eid	pid	n1	n2	n5	
	136	45	1661	1681	100	
1671						
*ELEMENT_BEAM_ELBOW						
\$	eid	pid	n1	n2	n5	
	137	45	1681	1701	100	
1691						
*SECTION_BEAM						
\$	sid	elf		shrf	qr/irid	cst
	45			1.000	-2	2.0
\$	PR			IPRSTR		
	12.000			0		
*INTEGRATION_BEAM						
	2			0	9	0
	. 1375					
*MAT_ELASTIC						
\$	mid			e	pr	
	45	7.86		200.E+9	0.28	

