
Using LS-OPT for meta-model based global
sensitivity analysis

Uwe Reuter, Zeeshan Mehmood, Clemens Gebhardt
Department of Civil Engineering, TU Dresden, Germany

Martin Liebscher, Heiner Müllerschön, Ingolf Lepenies
DYNAmore GmbH, Dresden, Germany

Summary:

Popular sensitivity analysis methods such as ANOVA and SOBOL indices are widely used in LS-OPT in
order to measure the importance of different input variables with respect to the model response. These
methods are applied using meta-models in LS-OPT. In contrast, sensitivity information can be directly
extracted from the meta-models using weight-based and derivative-based approaches. Meta-models
capture the non-linear relationship of the underlying input parameters to the design response. In this
paper, powerful sampling and pre-processing capabilities of LS-OPT are coupled with a user-defined
neural network based meta-model in order to perform weight based and derivative based sensitivity
analysis. The results of these sensitivity measures are compared with the default SOBOL approach by
using an analytical as well as an industry relevant crash analysis example.

Keywords:

Sensitivity analysis, variable screening, neural networks.

1

8th European LS-DYNA Conference, Straßburg 2011

1 Introduction

Sensitivity analysis helps in identifying the most significant model parameters affecting a specific model
response. Each individual model parameter xi, i=1,2,···,n is compared with the other remaining model
parameters x1, · · ·xi−1,xi+1, · · · ,xn in order to evaluate its influence on the model response z.

The normalized sensitivity measure Si for a model parameter xi, i=1,2,···,n is given by:

Si =
S̃i

∑
n
j=1 S̃ j

(1)

where S̃i represents the influence of xi on z according to a specific sensitivity measure.

Already existing variance based sensitivity analysis techniques such as ANOVA and SOBOL indices
in LS-OPT provide global sensitivity information for linear/quadratic and non-linear models respectively
[9, 5, 11]. These techniques are applied in LS-OPT using a meta-model. In this paper, properties of
neural networks are exploited for directly extracting sensitivity information. For this, a tool named PySen
is developed which contains a neural network implementation and a sensitivity analysis module. The
sensitivity analysis module contains the weight-based and derivative based method implementations.
The tool is attached to LS-OPT using a well-defined meta-model interface. Finally, a wrapper is written
which automates and simplifies the use of LS-OPT for calculating sensitivity information together with Py-
Sen. The wrapper also facilitates the comparison of different methods and the generation of the results.
In section 2, different global sensitivity analysis methods are briefly explained. Section 3 highlights the
software system architecture including LS-OPT, Interface and PySen which is used to perform sensitivity
analysis for the examples presented and evaluated in section 4. Section 5 concludes the paper.

2 Global sensitivity analysis methods

2.1 Variance based methods

Advancement in computing power has facilitated the use of variance based methods that can accom-
modate non-linearity and interactions within a model and its variables. These methods are usually
model independent so they can be used on models whose algorithms are complex or are not under-
stood deterministically. One such method is the variance based decomposition [12, 10]. A response
y = f (x) , x = (x1, · · · ,xn) can be represented as

f (x) = fo +
n

∑
i

fi (xi)+ ∑
1≤i< j≤n

fi j (xi,x j)+ · · ·+ f1,2,···,n (x1, · · · ,xn) (2)

Such a decomposition of f (x) is termed as variance based decomposition. The function f (x) is char-
acterized by its variance V which can be decomposed into partial variances associated with x1,x2 · · · ,xn
according to Eq. (2) as

V =
n

∑
i=1

Vi + ∑
1≤i<k≤n

Vi,k + · · ·+V1,2,···,n (3)

Each partial variance Vi1,···,is can be related to each of the sensitivity measures Si1,···,is as

Si1,···,is =
Vi1,···,is

V
, 1≤ i1 < · · · is ≤ n, s = 1,2, · · · ,n (4)

In order to evaluate the total effect of a single variable xi, all partial sensitivity measures Si involving
xi are summed up to define total sensitivity measure STi . The total sensitivity measures consider the

© 2011 Copyright by DYNAmore GmbH

8th European LS-DYNA Conference, Straßburg 2011

interactions among all model parameters. In order to quantify which amount of variance V is caused due
to a single variable xi, the corresponding total sensitivity measures STi can be normalized as

norm STi =
STi

∑
n
k=1 STk

(5)

The total sensitivity measure STi as shown in Eq. (5) can be numerically computed using the SOBOL
approach [12, 10] which uses the Monte Carlo simulation. STi associated with each input variable xi can
be computed as STi = 1−S∼i, where S∼i =

V∼i
V and

V∼i ≈
1
N

N

∑
k=1

f
(

x(1)∼ik,x
(1)
ik

)
f (x(1)∼ik,x

(2)
ik)− f 2

0 (6)

The superscripts (1) and (2) indicate that two different samples are generated and mixed. x(1)∼ik denotes
the kth sample point with x(1)∼ik = (x(1)1k , · · · ,x

(1)
(i−1),x

(1)
(i+1)k, · · · ,x

(1)
nk) and f0 =

1
N ∑

N
m=1 f (xk) is the mean and N

is the number of simulation.

2.2 Neural Network based methods

A trained neural network can reason about the behavior of the model. Features of the neural network can
be used to determine the sensitivity measures [3, 7]. Values stored in the static matrix of weights can
be used to determine the relative influence of each input variable on the network response. Different
equations have been proposed which calculate the products of the weights of the network and then
obtaining the sum of the calculated products according to a certain criteria [13, 4]. These methods are
broadly characterized as weight based sensitivity measures. On the other hand, using the derivability
property of the neural network, derivative based sensitivity measures can also be determined [6].

2.2.1 Weight based sensitivity measures

The procedure termed as weights method was first introduced for a single hidden layer neural network
by Garson [2] in which hidden-output connection weights are partitioned into components associated
with each input neuron using absolute values of connection weights as

Sik =
∑

L
j=1

(
wi j

∑
N
r=1 wr j

w jk

)
∑

N
i=1

(
∑

L
j=1

(
wi j

∑
N
r=1 wr j

w jk

)) (7)

where wi j is the weight associated with the input neuron i and the hidden neuron j and w jk is the weight
associated with the hidden neuron j and output neuron k, wi j

∑
N
r=1 wr j

is normalized value of the connection

weight, N is the total number of input neurons and L is the total number of hidden neurons. If there
is only one output neuron or response variable, as in the case of the examples used in this paper, the
subscript k can be dropped.

Another equation has been proposed by Tchaban et al [13] in which the impact of each input is evaluated
on the neural network’s output through the connections with the hidden layer. A neuron input has a
positive impact on the neuron output if the input value multiplied by the weight is positive and vice
versa. This impact is established as a proportion of a particular input in the neuron output and stated
as Si j =

xiwi j
o j

where Si j is the impact of the input i on the output of the neuron j, xi is the value of the
input i, wi j is the weight between the input neuron i and the hidden neuron j, and o j is the output from
the hidden neuron j. Similarly the impact of the of the hidden neuron on the network output is given by
S jk =

o jw jk
ok

. Altogether, the impact of the of the input i on the output neuron k through the hidden neuron
j is equal to the product of the impact of the input i on the output of the hidden neuron j with the impact

© 2011 Copyright by DYNAmore GmbH

8th European LS-DYNA Conference, Straßburg 2011

of the hidden neuron j on the network output neuron k. Thus, Si = ∑
L
j Si jS jk, where Si is the overall impact

of the input i on the output neuron k. Substituting the value of Si j and S jk yields

Si =
xi

ok

L

∑
j=1

wi jw jk (8)

Equation (8) has been modified in [8, 14] for more than one hidden layers in which the impact or the
sensitivity measure Si is formulated for the number of layers k∈{1, · · · ,s} and with jk ∈{1, · · · ,Nk} neurons
per layer k respectively as

Si =
Ns−1

∑
js−1=1

· · ·
N2

∑
j2=1

∣∣∣w1
i, j2 .w

2
j2, j3w

s−1
js−1,1

∣∣∣ (9)

Weights in Eq. (12) are taken as absolute values in contrast to Eq. (8) in order to evaluate the total
influence. This method is taken as the standard weight based sensitivity measure in this paper.

Another sensitivity measure termed as activation weight based method is mentioned in [8, 14] in which
the values of the activations behind neurons K ≥ 2 are also considered due to the fact that weights
are always multiplied by the activation yk

p of the previous neuron. Equation (10) is used for calculating
activation weight based sensitivity measures in this paper where s is the total number of hidden layers
and N is the total number of neurons in each hidden layer.

Si =
Ns−1

∑
js−1=1

· · ·
N2

∑
j2=1

∣∣w1
i, j2

∣∣ . ∣∣y2
j2

∣∣ . ∣∣w2
j2, j3

∣∣ . ∣∣y3
j3

∣∣ ∣∣∣ys−1
js−1

∣∣∣ . ∣∣∣ws−1
js−1,1

∣∣∣ (10)

2.2.2 Derivative based sensitivity measures

Partial derivatives are quite useful in order to determine the importance of the input variables because
they represent the instant slope of the underlying function between each pair of input xi and output yk,
where i is the number of input neurons and k is number of output neurons. Montano et al [6] presented
a partial derivative based method using a single hidden layer neural network for determining sensitivity
measures with the help of the following equation.

Sik =
∂yk

∂xi
= f ′ (netk)

L

∑
j=1

wi j f ′ (net j) w jk. (11)

In Eq. (11) Sik denotes the sensitivity of the output yk due to changes in the input variable xi, f ′(net j)
and f ′(netk) are the derivatives of the activation function of the hidden neuron j and the output neuron k
respectively. netk is the output of the kth neuron of the output layer. Equation (11) is further elaborated
and extended for a single layer and a two hidden layers network in [14] . For a single hidden layer
network the formula is

S̃3Layer
i =

N2

∑
k=1

∣∣∣∣∣w1
ik.w

2
k1.der

(
w2

0k +
N1

∑
j=1

w1
jk.o

1
j

)∣∣∣∣∣ (12)

where, w2
0k +∑

N1
j=1 w1

jk.o
1
j is the input to the single neuron in output layer K. Eq. (12) is extended for a two

hidden layers network as:

S̃4Layer
i =

N3

∑
l=1

∣∣∣∣∣w3
l1.der

[
w3

0l +
N2

∑
k=1

w2
kl .act

(
w2

0k +
N1

∑
j=1

w1
jk.o

1
j

)]
· · ·

N2

∑
k=1

w1
ik.w

2
kl .der

(
w2

0k +
N1

∑
j=1

w1
jk.o

1
j

)∣∣∣∣∣ (13)

© 2011 Copyright by DYNAmore GmbH

8th European LS-DYNA Conference, Straßburg 2011

3 Using LS-OPT with user-defined meta models

3.1 System Architecture

The software system consists of four components namely: Wrapper, LS-OPT, Interface and PySen, see
Fig. 1. The wrapper automates and coordinates the execution of the test examples and cases. LS-
OPT acts as an intermediate layer for generating the sample points and the responses with the help
of a solver (LS-DYNA, Perl script etc.). Interface binds PySen with LS-OPT, while PySen acts as a
user-defined meta-model with sensitivity analysis capabilities. All components excluding LS-OPT are
implemented in Python 2.6.

Figure 1: Architecture Overview

3.2 LS-OPT

LS-OPT is an optimization tool which helps in design optimization, design of experiments, reliability
studies and sensitivity analysis. It uses meta-models for optimization and sensitivity analysis. Since
the accuracy of the meta-models is dependent on many factors such as the size of the sub-region and
the number and distribution of the design points, LS-OPT provides several point selection procedures
such as factorial, composite, D-optimal, Latin Hypercube and space filling for this purpose. LS-OPT
acts as a powerful design point and response generator with its parallel processing and diverse remote
job scheduling and queuing facilities. LS-OPT provides facility for attaching a user-defined meta-model
which can use the sampling strategies of LS-OPT.

3.3 Interface

The Interface acts as a connection component between LS-OPT and PySen. It is built using well-defined
interface functions provided by LS-OPT for connecting user-defined meta-models. It is a dynamic link
library/shared object file (Linux) which contains embedded python calls for invoking the meta-model and
sharing design points with PySen. Definitions for the interface functions are stated in Tab. 1.

void Build(float coordinates[][], float values[])
Call for building meta-model based on sampling points given by LS-OPT.

coordinates: List of the sample points containing coordinates. Every point is a list of coordinates as well. For example: [[1,2,2],[4,3,5]]

values: List of response values for the sample points.

float FuncVal(float coordinates[])
Returns the response value of the meta-model at a specific point.

coordinates: List of the coordinates of a sample point. For example: [1,2,2]

float FuncGrad(float coordinates[])
Returns the derivative of a specific point in the meta-model.

coordinates: List of the coordinates of a sample point. For example: [1,2,2]

Table 1: Definitions of interface functions

© 2011 Copyright by DYNAmore GmbH

8th European LS-DYNA Conference, Straßburg 2011

Figure 2: Software components and their interaction

3.4 PySen

PySen is a meta-model based sensitivity analysis tool which is developed for performing sensitivity
analysis with the help of different methods. It is written in Python programming language. It contains a
multi-layered neural network implementation and modules for calculating different neural network based
sensitivity measures. These include derivative based, weight based and activation based methods. It
also includes a SOBOL implementation. It has a flexible design and contains a Template and Hook
pattern architecture for connecting new methods.

3.5 Wrapper

The Wrapper is an umbrella layer that automates the execution of different test cases for sensitivity
analysis, see Fig. 2. It contains a template generator which accepts input files with simple statements
and invokes LS-OPT with automatically generated ”command” files. It provides a simplified interface
to LS-OPT focusing on executions related to sensitivity analysis. Fig. 3 shows a simple input file for
wrapper and the generated COM file with text in highlight showing the default options. The language of
the input file consists of the valid Python statements. The wrapper also automates the execution of the
test cases for different number of design points in order to analyze their effects on the model sensitivity.

Figure 3: Input file for the wrapper and the generated COM file for Ishigami example

© 2011 Copyright by DYNAmore GmbH

8th European LS-DYNA Conference, Straßburg 2011

4 Examples

In this section, different sensitivity analysis methods are applied for determining the variable contribu-
tions for an analytical as well as for a standard crash analysis example named US NCAP. As an an-
alytical example, the popular Ishigami function is taken which is often used in literature to study the
impact of input variables on the function response and whose sensitivity measures for each variable are
well known [9]. The sensitivity results are calculated with LS-OPT and with user-defined meta-model in
PySen.

4.1 Ishigami function

Ishigami function is often used as a benchmark in order to test the results of different sensitivity methods.
The function is given as:

f (x1,x2,x3) = sin(x1)+a . sin2(x2)+b . x4
3 . sin(x1). (14)

f x x x(, ,)1 2 3 x3 = 2 f x x x(, ,)1 2 3 x2 = 2 f x x x(, ,)1 2 3 x1 = 2

x1

x2

x1

x3

x3

x2

Figure 4: Cross-sectional plots of the Ishigami function

The example is carried out using the numerical values of a = 7 and b = 0.1. The plot of this nonlinear and
non-monotonic function is shown in Fig. 4. The function is approximated with a meta-model using 50,
200 and 400 points respectively each within the interval [−π,π] for each variable xi, i = 1,2,3. The points
are sampled using the space filling method in LS-OPT. A user-defined Perl script is used to emulate the
solver which contains the implementation of an Ishigami function. Tab. 2 shows the sensitivity plots for
derivative based, weight based, activation weight based methods as well as for SOBOL calculated with
PySen and for SOBOL calculated with LS-OPT respectively. Tab. 3 summarizes the sensitivity values for
each variable according to the different methods. In PySen, the user-defined neural network is trained
with two hidden layers of 13 and 7 neurons each. For each set of training points, two different neural
networks are trained with random initial weight settings in order to take into account the effects of training
on sensitivity measures. Therefore, Tab. 2 shows the mean and the variance for the sensitivity measures
associated with each variable. Regardless that a direct comparison between neural network based
methods and variance based methods is not feasible because of the different underlying theoretical
approaches [8], neural network based sensitivity measures are quantitatively more closer to the actual
analytical SOBOL indices calculated directly on the function as compared to the meta-model based
SOBOL indices. For the case of 50 points, variable contributions are effectively identified by the neural
network based methods. A point to note is that training of the neural network has an impact on the quality
of the sensitivity measures. Variance based methods were unable to correctly identify the contribution of
the variable x2 even for 400 points because these methods are strongly dependent on the approximation
quality of the underlying meta-model. In contrast, on neural network based sensitivity methods the
quality of approximation has relatively less effect. These results are initial investigations and require
further analysis of the effects of the quality of the meta-model and the convergence criteria.

4.2 US NCAP

As a crash analysis example, the NCAC Ford Taurus model is taken for a US NCAP frontal impact test
case [1]. For this test, 27 design variables are taken out of which 21 are sheet thickness variables and
6 are discrete material variables. There are three groups of responses namely: mass, intrusions and

© 2011 Copyright by DYNAmore GmbH

8th European LS-DYNA Conference, Straßburg 2011

Sensitivity measures for Ishigami function

50 200 400

Neural Network based methods

Variance based method

Table 2: Sensitivity measures for the Ishigami function with 50, 200 and 400 points

50 200 400
Variables Analytical LS-OPT PySen LS-OPT PySen LS-OPT PySen

SOBOL SOBOL SOBOL
derivative

based
weight
based

activation
weight
based

SOBOL SOBOL
derivative

based
weight
based

activation
weight
based

SOBOL SOBOL
derivative

based
weight
based

activation
weight
based

1 x1 0.45 0.49 0.44 0.39 0.39 0.40 0.48 0.49 0.52 0.53 0.48 0.47 0.46 0.52 0.47 0.58
2 x2 0.35 0.04 0.07 0.28 0.26 0.28 0.07 0.06 0.24 0.25 0.24 0.08 0.10 0.23 0.24 0.25
3 x3 0.20 0.45 0.48 0.32 0.34 0.31 0.43 0.43 0.22 0.21 0.27 0.43 0.42 0.23 0.28 0.16

Table 3: Tabular values for the sensitivity measures of the Ishigami function

accelerations. In this example, the impact of the 27 design variables (see Tab. 4) on a single response
variable ”max_intrusion_firewall_left” is investigated.

© 2011 Copyright by DYNAmore GmbH

8th European LS-DYNA Conference, Straßburg 2011

In order to evaluate the effects of the number of design points on the sensitivity measures, the analysis is
performed for 50, 200 and 400 simulated design points respectively. For the LS-OPT case, feed forward
neural network is taken as a meta-model. Default integration points are used for calculating sensitivity
indices. For the case of the user-defined meta-model, 10 neural networks are trained each with two
hidden layers of 7 and 3 neurons each. The sensitivity measures for each variable are shown in Tab.
5 for all sets of design points. Due to the lack of an analytical benchmark, the results of SOBOL are
compared with the neural network based sensitivity measures. For the case of 50 design points, neural
network based methods show substantial contributions for almost all variables excluding variables 10, 16
and 27, while LS-OPT shows very strong contributions for only 10 variables (1,2,5,7,9,11,16,21,24,26
and 27). With respect to the increase in number of design points, the variable contributions remain
relatively similar for neural network based methods. For the case of 400 points, the contribution of
variable 2 is identified to be the most significant by all methods. For variables 9, 11 and 24, LS-OPT
shows a higher contribution as compared to the neural network based methods. Also, a very significant
change in the contribution of variables relative to the increase in design points is identified by SOBOL
approach in LS-OPT while this change is not evident in neural network based methods. These results
are initial investigations and require further analysis of the effects of the quality of the meta-model and
the convergence criteria.

Figure 5: US NCAP - 56.6 km/h [1]

Figure 6: 21 sheet thicknesses, 6 discrete materials, 1 response variable [1]

Name Description # Name Description # Name Description

1 mat_rO BIW - rail - L - O / - R - O 11 rail_I BIW - rail - L - I / - R - I 21 sreinf BIW - toepan sup reinforc 1 - L / - R

2 mat_rI BIW - rail - L - I / - R - I 12 mreinf2 BIW - rail middle reinfor 2 - L / R - L 22 A_pil_O BIW - A pillar - L - O / - R - O

3 mat_fw BIW - firewall 13 subfr f-mech-subframe-front 23 A_pil_I BIW - A pillar - L - I / - R - I

4 mat_tp BIW - toe pan 14 subfr_l f-mech-subframe-front-lower 24 firewal BIW - firewall

5 mat_fl BIW - floor 15 arm_top f-mc-subframe-arm1-top / -arm2-top 25 toe_pan BIW - toe pan

6 mat_hd OB - hood – I 16 arm_bot f-mc-subframe-arm1-bottom / -arm2-bottom 26 radiat MC - radiator

7 rplate1 BIW - rail plate 17 tie_bar BIW - tie bar module 27 t_floor BIW - floor

8 rplate2 BIW - rail plate 18 bump_FT OB - bumper - FT

9 rail_O BIW - rail - L - O / - R - O 19 hood_I OB - hood - I

10 mreinf BIW - rail middle reinfoce - L / - R 20 hreinf3 BIW - front bumper frame

Table 4: Design variables of Ford Taurus for US NCAP

5 Conclusions

A software framework is developed which uses LS-OPT in order to perform user-defined meta-model
based sensitivity analysis. It provides a possibility for the usage of enhanced meta-model and different
methods for sensitivity analysis. Different neural network based sensitivity methods show a good po-
tential for identifying the variable contributions even with very few design points and can be used as an
alternative to the variance based sensitivity analysis techniques.

© 2011 Copyright by DYNAmore GmbH

8th European LS-DYNA Conference, Straßburg 2011

S
ensitivity

m
easures

forU
S

N
C

A
P

50
200

400

N
euralN

etw
ork

based
m

ethods

Variance
based

m
ethod

Table
5:S

ensitivity
m

easures
for”m

ax_intrusion_firew
all_left”w

ith
50,200

and
400

points

© 2011 Copyright by DYNAmore GmbH

8th European LS-DYNA Conference, Straßburg 2011

Acknowledgment

The authors gratefully acknowledge the financial support of the European Union (EFRE) and the Free
State of Saxony as well as the support of the Center for Information Services and High Performance
Computing (ZIH) of the Technische Universität Dresden.

References

[1] FHWA/NHTSA National Crash Analysis Center. Finite element model of ford taurus. Technical
report. Available at http://www.ncac.gwu.edu/vml/archive/ncac/vehicle/taurus-v3.pdf.

[2] G. D. Garson. Interpreting neural-network connection weights. AI Expert, pages 47–51, 1991.

[3] M. Gevrey, I. Dimopoulos, and S. Lek. Review and comparison of methods to study the contribution
of variables in artificial neural network models. Ecological Modelling, 160(3):249 – 264, 2003.

[4] M. Gevreya, I. Dimopoulosb, and S. Leka. Two-way interaction of input variables in the sensitivity
analysis of neural network models. Ecological Modelling, 195:43–50, 2006.

[5] B. Hohage, A. Förderer, G. Geissler, and H. Müllerschön. Global sensitivity analysis in industrial
application with ls-opt. In 9. LS-DYNA Forum, Bamberg, 2010.

[6] J. J. Montano and A. Palmer. Numeric sensitivity analysis applied to feedforward neural networks.
Neural Computation and Applications, 12, 2003.

[7] J. D. Olden, M. K. Joy, and R. G. Death. An accurate comparison of methods for quantifying variable
importance in artificial neural networks using simulated data. Ecological Modelling, 178(3-4):389–
397, 2004.

[8] S. Pannier and W. Graf. Sectional sensitivity measures with artificial neural networks. In 9th LS-
DYNA User Forum, Bamberg, 2010.

[9] U. Reuter and M. Liebscher. Global sensitivity analysis in view of nonlinear structural behavior. In
7th LS-DYNA User Forum, Bamberg, 2008.

[10] U. Reuter, M. Liebscher, and H. Müllerschön. Global sensitivity analysis in structural optimization.
In 7th European LS-DYNA Conference, Salzburg, 2009.

[11] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, and S. Tarantola.
Global Sensitivity Analysis: The Primer. John Wiley and Sons Ltd, 2008.

[12] I. M. Sobol. Global sensitivity indices for nonlinear mathematical models and their monte carlo
estimates. Mathematics and Computers in Simulation, 55:271–280, 2001.

[13] T. Tchaban, M. J. Taylor, and J. P. Griffin. Establishing impacts of the inputs in a feedforward neural
network. Neural Computing and Applications, 178:309–317, 1998.

[14] Bernd Zwingmann. Einsatz neuronaler Netze in der numerischen Simulation - Sensitivitätsanalyse
und Netzoptimierung. Diploma Thesis, Institute for Structural Analysis, Faculty of Civil Engineering,
TU Dresden, 2009.

© 2011 Copyright by DYNAmore GmbH

