

Efficient nonlinear multi-scale modeling of composite structures

Thibault Villette, Jan Seyfarth, Roger Assaker, Laurent Adam May 2011

🛠 Agenda

- ✓ e-Xstream engineering
- ✓ DIGIMAT
 - Technology
 - Applications
 - CPU & Robustness

✓ DIGIMAT future

- CPU
- LS-DYNA Implicit
- Continuous fibers & drapage

✓ The company
✓ Founded in 2003

🛠 The Business:

- ✓ Simulation Software & Services
- $\checkmark~100\%$ focused on material modeling

🛠 The team

- ✓ Strong & highly motivated
- ✓ High level of education

🛯 The product

Bus

Fin

- Belgium
- Luxembourg
- **Germany**
- U.S.

🛠 Composites

- ✓ Fiber reinforced polymers
 - Short fiber
 - Long fiber
 - Endless fiber
- ✓ Rubber
 - Particle reinforced
- ✓ Hard metals
- ✓ Ceramics
- ✓ Woven composites
- ✓ Nano

✤ Integration is key to productivity

∞ Integrate simulation early in the development cycle

- ✓ Save cost
- ✓ Drive innovation
- ✓ Improve time to market
- ✓ Improve quality of products

- \checkmark Integrate the solution in one platform
 - DIGIMAT is a fully consistent multi-scale simulation platform
- $\checkmark\,$ Integrate the solution in the existing environment
 - DIGIMAT offers interfaces to all widely used FEM software

DIGIMAT , The multi-scale material modeling platform

<u>Settings License H</u>elp <u>A</u>bout

🕫 Basic methodology

Method

Ellipsoidal inclusions

Uniformly distributed inclusions Average per phase (micro) results

Benefits

Fast model preparation/solution Fully coupled multi-scale analyses Nonlinear material properties

 Method

 RVE generation

 FE model (mesh optimization, CPU...)

Uncoupled multi-scale analyses

Benefits

Accurate predictions at the micro scale Complex inclusion shapes (non ellipsoidal) Explicit modelling of clustering & percolation

€€Cdigimat-MF

- ✓ Central technology for structural engineering
- ✓ Mean-field homogenization
 - The trick
 - Separation of matrix & filler properties
 - Added information about the material microstructure
 - The result
 - Material models sensitive to the microstructure

€∕digimat-CAE

- \checkmark Interfaces to external FEA software
 - To read in microstructure data
 - To connect the Digimat-MF material description to FE solvers

Edigimat-MAP

Local fiber orientations

Wednesday, May 04, 2011

E digimat-MX

✓ Material eXchange platform

✤ DIGIMAT for injection molded plastic parts

Wednesday, May 04, 2011

Short fiber reinforced plastics

✓ Impact on a beam

Short fiber reinforced plastics

✓ Air intake manifold

✤ DIGIMAT convergence schemes

- ✓ Two sources for improved robustness
 - Mori-Tanaka convergence scheme
 - Scheme enforcing plane stress condition for shell elements
- \checkmark Initiative for 4.1.2 based on 7 customer models
 - Small and medium size
 - EP / TEP / EVP
 - Shell & solid
- ✓ Improvements
 - 5 out of 7 models run up to finalization (small & medium size)
 - 2 out of 7 models show major improvements (medium size)

✤ DIGIMAT convergence schemes

✓ Comparison of CPU between 4.1.1 and 4.1.2

Shell [EP]	4 - 22 %	improvement in CPU	(explicit)
 Shell [EVP] 	17 - 45 %	improvement in CPU	(explicit)
 Solid [EVP] 	0 %	improvement in CPU	(explicit)
 Solid [TEP] 	22 %	improvement in CPU	(implicit)

- ✓ Major improvements for shell elements & explicit solvers
- \checkmark Using SUD is key for CPU time reduction
 - With SUD=2-10 about 60 90 % of computational time can be saved with respect to SUD = 0
 - Post failure has to be checked carefully
- ✓ Recommended approach using SUD today
 - Determine the *time of failure* in a quick pre-analysis (SUD>0)
 - Quasi-static load scenarios

∞ Recommended approach using SUD today

Wednesday, May 04, 2011

ℜ Recommended approach using SUD today

 \checkmark Application example: impact on a beam

• Elasto-viscoplastic material

Wednesday, May 04, 2011

Copyright© e-Xeme?m engineering, 2011

Significant CPU reduction also for SUD = 0

- ✓ Available with DIGMAT 4.2.1
 - As first implementation the method allowing for the maximum speedup is under current work
- ✓ Change in material description
 - Coarsening of details
 - SpeedUp of Calculation
- ✓ The user will be able to decide between speed of the analysis and accuracy of the results

Ω Digimat-CAE/LS-DYNA(Implicit)

- ✓ Available with DIGMAT 4.2.1
 - A first implementation exists and is under current testing

EV Future Developments

🕫 Drapage & Continuous fiber reinforcement

- \checkmark M-T Homogenization well suited for prediction of material behavior
- ✓ Glass fibers, Carbon fibers
- ✓ Nonlinear matrix properties (+strain rate dependency, temperature...)

✤ Continuous fiber reinforced plastics

✓ Bird strike on an airplane underbelly fairing

∞ Interfaces to drapage analysis

∞ e-Xstream engineering: 100% focused on material modeling

🛠 DIGIMAT

✓ Unique nonlinear multi-scale material and structure modeling platform

∞ Injection molded plastic parts

- ✓ Well established application basis
- ✓ Further improvements in CPU & robustness

∞ DIGIMAT Future (2011/2012)

- ✓ LS-DYNA Implicit
- ✓ CPU Improvements
- \checkmark UD composite parts with interfaces to draping