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Abstract

Today polymer materials are frequently used in the transport domain with
more severe specification requirements. The behaviour modeling and failure
prediction have consequently become a priority. In this paper, an elasto-
viscoplastic behaviour model is presented, with non associated plasticity,
damage and strain rate effect, which represents the observed behaviours of a
semi-crystalline polymer under dynamic loading.
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1. Introduction

Crashworthiness simulation has been a major factor in enabling automo-
tive manufacturers to achieve a 30 to 50 % reduction in development time
and costs over the past decade. Moreover, demand for greater weight savings
and occupant protection has required new design concepts and the use of
lightweight materials that often have high ductility and a complex failure.
The polymer materials in general are good candidates to reach such objec-
tives.
In recent years, there have been more and more polymer behaviour studies
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especially in quasi static states. Two approaches are generally used. A phe-
nomenological one, based on the models previously developed for metals to
introduced the viscoplasticity (Ho and Krempl, 2002; Colak, 2005) and phys-
ical ones where the strain hardening of semi crystalline polymer is interpreted
as entropic forces needed to orient the macromolecular chains connected by
cross-links (Ayoub et al., 2010; Regrain et al., 2009).
To take the pressure dependence of the polymer matrix into account, some
studies have been done by introducing damage models to overcome this prob-
lem. The main model used for damage is the Gurson model which describes
the growth of spherical cavities under hydrostatic stress (Zari et al., 2008).
This introduction results in very complex models in which material param-
eters are difficult to identify for automotive application, like the length of
the macromolecular chain, the number of rigid links per chain, the initial
porosity, etc... . The phenomenological approach is therefore more suitable
if the non isochoric deformation is taken into account and if a new technique
is used to identify behaviour laws at constant strain rate for a large strain
rate range (Lauro et al., 2010; Epee et al., 2011).
In this paper, the behaviour model implemented via an usermat subroutine
into the finite element code LS-DYNA R©, with softening handled by damage
model and regularization technique will be presented. The behaviour model
is based on the Drucker Prager yield surface (Drucker and Prager, 1952)
which takes into account the hydrostatic pressure. The non-associated plas-
ticity is used with a viscoplastic potential based on the Perzyna model. The
model parameters (behaviour laws, damage and rate sensitivity) are deduced
from experimental tests.

2. Description of the elasto-plastic model

2.1. Pressure dependent yield surface

As the polymer behaviour depends on the kind of loading, it is also nec-
essary to use a non-symmetric yield surface to represent the behaviour differ-
ence in tension, compression and shear loading. The Drucker Prager model
is a modification of the von Mises criterion, where an extra term is added to
introduce the hydrostatic pressure sensitivity. This model considers that the
plasticity occurs when the von Mises equivalent stress and the hydrostatic
pressure reaches a critical combination. The behaviour surface defined by
the Drucker Prager model is given by
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f (σ˜ , σt) = σe + ηp− ξσt = 0 (1)

where σe is the equivalent von Mises stress:

σe =

√
3

2
S˜ : S˜, (2)

S˜ is the deviatoric stress tensor

S˜ = σ˜ − p I˜, (3)

I˜ is the second order unity tensor and p the hydrostatic pressure given by

p = tr(σ˜) (4)

with tr(·) is the trace of a second order tensor.
σt is the behaviour law in tensile loading, η and ξ are material parameters
which characterize hydrostatic pressure dependency. η and ξ are the ratio
between the behaviour law in tension and compression (σc)

η = 3
σt/(σc − 1)

σt/(σc + 1)
, ξ = 1 +

η

3
. (5)

2.2. Non-associated plasticity

In the small-strain elastoplastic theory, the total strain rate tensor ε̇˜ is
additively decomposed into an elastic component ε̇˜el and plastic component
ε̇˜p ε̇˜ = ε̇˜el + ε̇˜p (6)

where the superimposed dot denotes the time derivative.
The plastic deformation of the polymer materials is not an isochoric phe-
nomenon. Indeed, the plastic Poisson ratio νp measured experimentally, dur-
ing a tensile test, shows a decrease in function of the longitudinal strain εyy
(Fig. 1). The non-associated plasticity is then used to represent this volume
variation. A plastic potential, g, different to the yield surface is used

g (σ˜) = σe + αp. (7)

The plastic potential gives the direction n˜ of the plastic flow. With a non-
associated rate independent plasticity, the plastic strain rate tensor ε̇˜p is
given by

ε̇˜p = λ̇ n˜ (8)
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Figure 1: Variation of the plastic Poisson ratio during a tensile test measured on a
polypropylene.

where λ̇ is the rate form of the plastic multiplier λ. The flow direction n˜ is
performed from the plastic potential by

n˜ =
∂g

∂σ˜ . (9)

The deviatoric plastic strain rate tensor is given by

ε̇˜pd = ε̇˜p − ε̇˜
p
v

3
I˜ (10)

ε̇˜pv is the volumetric part of the plastic strain rate tensor

ε̇˜pv = tr (ε̇˜p) . (11)

According to equation 8, the deviatoric and the volumetric part of the plastic
strain rate tensor is defined as below

ε̇˜pd = λ̇n˜d, (12)

ε̇˜pv = λ̇n˜v, (13)

where n˜d and n˜v are the deviatoric and the volumetric part of the flow
rule respectively. Assuming the deviatoric and volumetric part of plastic
potential, respectively, gd and gv, in the current model (Eq. 7), ε̇˜pd and ε̇˜pvare given by

ε̇˜pd = λ̇
∂gd
∂σ˜ = λ̇

3

2

S

σ̃e
, (14)
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ε̇˜pv = λ̇
∂gv
∂σ˜ = λ̇

α

3
I˜ (15)

where α is a material parameter which depends on the plastic Poisson ratio

α =
3

2

1− 2νp
1 + νp

. (16)

The parameter α is not a constant value, indeed, the plastic Poisson ratio is
in function of the equivalent plastic strain κ as follows

νp = y0 + a exp
(κ
t

)
(17)

where y0, a and t are material parameters determined by experimental tests.

2.3. Damage model

During a tensile test, polymer materials, like polypropylene, have the
transversal strains equal to the thickness strains of the specimens. This
particular behaviour is called transversal isotropy. Figure 2 shows the true
strains measured by Digital Image Correlation (DIC) during a tensile test on
a polypropylene. For this measurement, the 2D DIC is used but with two
cameras, one for the measurement of the front of the specimens, the other
one for the measurement of the thickness of the specimens. Furthermore, the
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Figure 2: True strains measured by DIC during a tensile test on a polypropylene.

material does not have volume conservation during the plastic deformation
and the trace of the strain tensor ε˜ is null, like isochoric materials. The
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true stress, which takes into account the section reduction, is given by the
following relation (by considering −→y the traction direction)

σyy =
F

S 0
exp(−εxx) exp(−εzz) (18)

where S0 is the initial section. With the transversal isotropy hypothesis, the
true stress performed by Eq. 18 becomes

σcomyy =
F

S 0
exp(−2εxx). (19)

On the other hand, if the true stress is calculated as a incompressible material
(tr(ε˜) = 0), Eq. 18 becomes

σincyy =
F

S 0
exp(εyy). (20)

These different hypotheses have a strong impact on the behaviour laws de-
duced from the experimental tests. Figure 3 shows the effect of the two
hypotheses on the true behaviour law performed in tensile loading.
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Figure 3: Difference between incompress-
ibility/compressibility hypothesis on the
behaviour laws in tension on a polypropy-
lene.

Damage model

εyy

ω

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 4: Damage model characterized by
tensile tests on polypropylene.

In the current model, the behaviour law used is the incompressible law, which
is corrected by a damage model. The damage evolution, D, is also character-
ized by the ratio between the compressible and the incompressible behaviour
law (Fig. 4)

D = 1−
σcomyy
σincyy

. (21)
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The damage model used in the numerical model is in function of the equiv-
alent plastic strain κ by

D =


0 if ω(κ) ≥ 1

1− ω(κ) if 0 < ω(κ) < 1
1 if ω(κ) ≤ 0

(22)

where the function ω(κ) takes the following form

ω(κ) = b exp

(
κ

kc

)
(23)

and b, kc are material parameters deduced from experimental tests.
By analogy with the classical damage theory, where the effective stress σ˜eff

is given by

σ˜eff =
σ˜(1−D)

. (24)

The compressible tensile behaviour law in the model is also

σcomt = (1−D)σinct =


σinct if ω(κ) ≥ 1

ω(κ)σinct if 0 < ω(κ) < 1
0 if ω(κ) ≤ 0

. (25)

The yield surface of the model (Eq. 1) becomes

f
(
σ˜ , σinct , ω

)
= σe + ηp− ξωσinct = 0. (26)

3. Viscoplastic formulation

As Behaviour law of polymers are highly rate dependent, some experi-
mental tests at different speed loadings are carried out. It is also necessary to
take this rate dependency into account on the numerical model. Furthermore,
the softening effect introduced by the damaged behaviour law leads to the
well known localization problem of deformation in a narrow zone. The finite
elements simulation, using the classical continuum plasticity, is not able to
describe the softening effect of such ductile materials. This numerical prob-
lem leads to a mesh dependency on the response of the finite element model.
The localization problem, due to the softening behaviour law in tension, is
overcome by using a viscoplastic formulation.
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3.1. Perzyna based model

In the small-strain viscoplastic theory, the total strain rate tensor ε̇˜ is
additively decomposed into an elastic component ε̇˜el and a viscoplastic com-
ponent ε̇˜vp ε̇˜ = ε̇˜el + ε̇˜vp. (27)

As in classical elasto-plasticity, the viscoplastic strain rate evolves with the
flow rule

ε̇˜vp = λ̇ n˜ (28)

where n˜ is derived from a plastic potential (Eq. 9) which can be associated
or non-associated. In the Perzyna viscoplastic model (Perzyna, 1966) the
viscoplastic strain rate tensor is defined by

ε̇˜vp =

〈
φ(f

′
)
〉

β
n˜, (29)

with β the viscosity parameter, φ the over-stress function that depends on the
rate-independent yield surface f

′
. By combining equation 28 with equation

29, the rate form of the plastic multiplier is written as

λ̇ =

〈
φ(f

′
)
〉

β
(30)

where “〈·〉 ”are the McCauley brackets, such that〈
φ(f

′
)
〉

=

{
φ(f

′
) if φ(f

′
) ≥ 0,

0 if φ(f
′
) ≤ 0.

(31)

An expression of the over-stress function widely used is

φ(f
′
) =

(
f

′

K

)m
(32)

with K commonly chosen as the initial yield stress and m the calibration
parameter. In the current model, the over-stress function has been chosen to
deduce the calibration strain rate parameter m directly from experimental
results. The rate-dependent tensile behaviour law σvt , determined by experi-
mental tests at different speed loadings, takes the following form

σvt = σtκ̇
n (33)
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with n the strain rate parameter deduced experimentally and κ̇ the equivalent
viscoplastic strain rate

κ̇ =

√
2

3
ε̇˜vp : ε̇˜vp. (34)

By combining the Perzyna formulation of the plastic multiplier (Eq. 30 ) and
assuming the viscous parameter β set to 1, the deviatoric and volumetric part
of the viscoplastic strain rate tensor, respectively, ε̇˜vpd and ε̇˜vpd are given by

ε̇˜vpd =
〈
φ(f

′
)
〉 3

2

S

σ̃e
, (35)

ε̇˜vpv =
〈
φ(f

′
)
〉 α

3
I˜. (36)

By combining equation 34, 40 and 37 the equivalent plastic strain is given
by

κ̇ =

√
1 +

2α2

9

〈
φ(f

′
)
〉
. (37)

The rate-independent tensile behaviour law σt, in the current model is given
by

σt = σti + kpl (1− exp(wκ)) (1 + h1κ+ h2κ
m2) (38)

with σti the initial yield stress in quasi-static loading, and kpl, w, h1, h2,
and m2 hardening parameters determined experimentally. By combining the
damaged yield surface (Eq. 26) and the rate-dependent hardening formula-
tion, the rate-dependent yield surface becomes1

f (σ˜ , κ, κ̇) = σe + ηp− ξωσtκ̇n = 0. (39)

The evolution of the strain rate tensor, which directly uses the strain rate
parameter determined experimentally n is obtained by combining equations
29, 30, 32, 37 and 39

ε̇˜vp =
1√

1 + 2α2

9

〈(
σe + ηp

ξωσt

)1/n
〉
n˜. (40)

1In the aim of clarity, in all the following equations, the behaviour law (σt) is the
incompressible (undamaged) behaviour law (σinc

t ).
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In this formulation the parameterK is replaced by the damaged rate-independent
behaviour law ωσt with its pressure dependent parameter ξ (Eq. 5).
This model has been implemented via an usermat subroutine for the explicit
finite elements code LS-DYNA R©.

4. Numerical results

4.1. Verification of the mesh independency

In this section, a numerical example is presented to highlight the numer-
ical result independency on the mesh. The numerical example is carried out
on a square. The geometry of the problem and the loading conditions are
illustrated in Figure 5. For symmetry reasons, the analysis is performed on
the quarter of the section with appropriate boundary conditions.

20
 m

m

20 mm

v = 1 m/s

Figure 5: Fine elements mesh.
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Strain/Stress response
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Figure 6: Strain/Stress response on one el-
ement.

Figure 7: Plastic strain response on the
mesh with 25 elements.

Figure 8: Plastic strain response on the
mesh with 100 elements.

Figure 9: Plastic strain response on the
mesh with 400 elements.

Figure 6 shows the behaviour law used for this material (Polypropylene).
Three kinds of mesh are used to evaluate the mesh independency on the
numerical response. The three models have respectively 25, 100, and 400
elements. All models are meshed with fully integrated shell elements (4 gauss
points) and 3 integration points in the thickness. Figure 6 shows the stress
response on one element. This stress response shows the softening effect
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Tensile test on different meshes
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Figure 10: Force response on the tensile test on different meshes.

introduced in the model. The stress response is taken randomly from one
element, but Figure 7, Figure 8 and Figure 9 show the same value in terms
of plastic strain and also in terms of stress in all the elements for the three
models. Figure 10 shows the independency of the mesh on the numerical
response.

4.2. Validation of the model on tensile tests

Tensile tests are performed at 3 loading speeds: 0.08 m/s, 0.8m/s and
4m/s. The tests are carried out on normalized tensile specimens. The geom-
etry of the specimens and the loading conditions are illustrated in Figure 11.
The specimen is meshed with fully integrated shell elements (4 gauss points)
and 3 integration points in the thickness.

As shown in Figure 12, no localization of the strains appears during the
tests, the plastic deformation in the length gauge (initially 30 mm) is homo-
geneous in all the elements. Figure 13 shows a good correlation between the
numerical response and the experimental data, in terms of force/displacement
for the three dynamic speed loadings. The strain tensor components are
shown in Figure 14. εxx is equal to εzz, the isotropic transversal behavior is
also well modeled.
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Figure 11: Fine elements mesh.
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Figure 12: Plastic strain response on the
tensile test at 4 m/s.
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Figure 13: Numerical/Experimental comparison results for 3 loading speeds in tension.
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Strain evolution 
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Figure 14: Strain vs time.

5. Conclusion

The implemented elasto-viscoplastic model simulates polymer material
such as semi-crystalline polymer. The hydrostatic pressure is modeled by
using a non-symmetric yield surface. The plastic potential different to the
yield surface takes into account the non-isochoric plastic deformation. The
localization problem due to the softening effect introduced by the damaged
behaviour law is overcome by a viscoplastic formulation. In the future, a
fracture model which takes the hydrostatic pressure and the triaxial stress
ratio into account, will be added to the existing model. The complete model
will be able to simulate the behaviour of the material until fracture in a
structure solicited under dynamic loading.
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