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1 Introduction 

Woven fabric behavior is generally highly non-linear and non-isotropic.  Such behavior is difficult to 
approximate with typical continuum based material models.  As such, woven fiber behavior has 
generally been simulated employing simple uncoupled non-linear orthotropic behavior based on 
uniaxial or equi-biaxial input.  This approach has been acceptable for system level modeling of airbag-
occupant interaction as well as modeling of general inflated shape and volume but insufficient for 
reasonably accurate prediction of local stress states within the cushion. The stress state can be used 
as an indicator of failure in seams and thus used to assess the constructional design of the airbag.  
 
Historically, LS-DYNA [1] has provided a number of options for modeling of fabric, all connected to the 
keyword MAT_FABRIC. This material model assumes that the fabric can be modeled as a membrane 
without bending resistance and provides a collection of features associated with airbag modeling. 
From a pure constitutive viewpoint, FORM=14 provides non-linear uncoupled fiber behavior.  Stress-
strain response is based on either uniaxial, equi-biaxial input or some selected strain state in between.  
This approach can provide approximation of general material stiffness due to fiber coupling but only 
for the immediate domain of the selected input. FORM=-14 was subsequently developed and partially 
incorporates stiffness effects of fiber coupling over a limited but larger domain.  This is accomplished 
by input of both uni-axial and equi-biaxial input and linearly interpolating between, thereby reasonably 
approximating fiber coupling for a limited domain near equi-biaxial behavior. 
 
The subject of this paper is a new fabric model, MAT_FABRIC_MAP which is a general approach to 
model fiber coupling effects for the entire tension-tension domain while allowing for uncoupled 
behavior in the compression-tension and compression-compression domains.  This is accomplished 
via direct mapping (tables) of fiber stresses to corresponding warp and weft fiber strain points 
throughout the strain domain of simulation.  The approach is discussed in comparison with alternate 
approaches and along with numerical and physical considerations that were addressed to ensure 
solution stability. 
 
The paper is organized as follows. In Section 2 and 3 the theory of three variants of the LS-DYNA 
fabric material model is presented together with accompanying parameter estimation approaches. The 
physics behind the different approaches is discussed. Some additional features required for 
robustness and accuracy in airbag simulations are presented in Sections 4 and 5, in particular an 
optional bending resistance that can be used for a controlled behavior of the fabric. Some examples 
from the airbag industry are provided in Section 6 and the paper concludes with a summary in Section 
7. 

2 The Fabric Material Models 

Throughout this paper we repeatedly use �, �,  ���, ��� and ��� to denote Green strain data and 
likewise �, �,  ���, ��� and ��� to denote 2nd

 Piola-Kirchhoff stress data.  

2.1 FORM=14 

FORM=14 is probably the most common option in everyday simulation of material 34 (MAT_FABRIC). 
It allows for specification of input curves to define individual stress components’ response as function 
of corresponding strain components ��� = �������� (1a) 

��� = �������� (1b) 

��� = ��������. (1c) 
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The first two curves can in principle be estimated directly from two uniaxial tests, see top of Figure 1, 
as follows. For a sample specimen of length � and cross sectional area �, let 	(
) be the force 
displacement curve from the test. Then the uniaxial strain and stress used in the material model is 
calculated as 

� =
1

2
�
� + 1�� −

1

2
 

(2a) 

� =
	(
)

�
�

� + 
 
(2b) 

 
but this approach typically results in too soft response in airbag applications. Therefore an approach is 
used that incorporates biaxial effects, see bottom of Figure 1. The shear curve estimation is treated in 
detail in Section 3. 

 
Figure 1 Uniaxial (top) and biaxal (bottom) test setup. 
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2.2 FORM=-14 

To account for biaxial stiffening, FORM=-14 was developed. The stress is here determined from a set 
of uniaxial and biaxial input curves 

��� = 1 − α �������

������ ����� + α �������

� ���� ����� (3a) 

��� = 1 − α �������

������ ����� + α �������

� ���� ����� (3b) 

while the shear stress is the same as in FORM=14, see (1c). These formula are valid only for ��� > 0 
and ��� > 0, for other combinations of strain (1a) and (1b) are used. The function � used to interpolate 
between the uniaxial and biaxial curves can be expressed simply as 

���� = min�1, ��. (4) 

The curves can be estimated from uniaxial and biaxial tests, see Figure 1, and the resulting model is 
accounting for biaxial stiffening due to interaction between yarns in the warp and weft directions. 
Unfortunately the heterogeneous strain distribution in the biaxial test prevents using formulas like (2) 
for the biaxial curves, and a more sophisticated approach is required. 

 
Figure 2 Illustration of the generality of different fabric models, FORM=14 is incorporated in 
FORM=-14, which in turn is incorporated in the Stress Map material. 
 

2.3 Stress Map 

The Stress Map Material, as the name suggests, maps a point in strain space to a point in stress 
space. A utopian goal would in general be to prescribe a function 

� = ����. (5) 

For practical purposes this is somewhat specialized and broken down into expressions involving 
individual components of stress and strain. For the user’s convenience they are expressed in 
engineering quantities, we have 

��� = �������, ���� (6a) 

��� = ������� , ���� (6b) 

where ��� and ��� denote the engineering strain components while ��� and ��� are the engineering 
stress components. The conversion formulae between the stress and strain measures used are 

� = √1 + 2� − 1 (7a) 

� =
�

1 + � 
(7b) 

and are applied in the two fiber directions. This model is a generalization of FORM=-14 and the most 
general elastic model for fabrics currently available. 
 

FORM=14: ��� = ������ 

FORM=-14:  ��� = �1 − ��������� + �������� 

Stress Map:  ��� = �����,���� 

Completely General:  ��� = �����,��� ,���� 
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One nice feature with the stress map approach, that is not incorporated in the elastic models of 
FORM=14 or FORM=-14, is nonlinear Poisson effects. Using the former models, deformation in 
uniaxial strain in either warp or weft direction will inevitably result in a uniaxial stress response. 
Referring to Figure 3, the tables used in the Stress Map model can be set up so that uniaxial strain will 
result in a contractive stress, resulting in a realistic response of a fabric in uniaxial tension. 
 

 

 
Figure 3 Excel input of weft stress table and resulting weft stress surface, some special stress 
strain paths are indicated. The effect of nonlinear Poisson’s ratio is illustrated below for 
uniaxial deformation in warp and weft directions. 
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Weft 2nd P-K Stress as a function of Green's Strains

Warp Strain (Green's)

-0.37500 -0.34875 -0.32000 -0.28875 -0.25500 -0.21875 -0.18000 -0.13875 -0.09500 -0.04875 0.00000 0.05126 0.10500 0.16125 0.22001 0.28125 0.34501 0.41125 0.48000 0.55125 0.62500

Weft -0.37500 -150.000 -150.000 -150.000 -150.000 -150.000 -150.000 -150.000 -150.000 -150.000 -150.0 -150.0 -135.0 -123.0 -111.0 -99.0 -93.0 -90.0 -90.0 -90.0 -90.0 -90.0

Strain -0.34875 -122.727 -122.727 -122.727 -122.727 -122.727 -122.727 -122.727 -122.727 -122.727 -122.7 -122.7 -109.1 -98.2 -87.3 -76.4 -70.9 -68.2 -68.2 -68.2 -68.2 -68.2

(Green's) -0.32000 -100.000 -100.000 -100.000 -100.000 -100.000 -100.000 -100.000 -100.000 -100.000 -100.0 -100.0 -87.5 -77.5 -67.5 -57.5 -52.5 -50.0 -50.0 -50.0 -50.0 -50.0

-0.28875 -80.769 -80.769 -80.769 -80.769 -80.769 -80.769 -80.769 -80.769 -80.769 -80.8 -80.8 -69.2 -60.0 -50.8 -41.5 -36.9 -34.6 -34.6 -34.6 -34.6 -34.6

-0.25500 -64.286 -64.286 -64.286 -64.286 -64.286 -64.286 -64.286 -64.286 -64.286 -64.3 -64.3 -53.6 -45.0 -36.4 -27.9 -23.6 -21.4 -21.4 -21.4 -21.4 -21.4

-0.21875 -50.000 -50.000 -50.000 -50.000 -50.000 -50.000 -50.000 -50.000 -50.000 -50.0 -50.0 -40.0 -32.0 -24.0 -16.0 -12.0 -10.0 -10.0 -10.0 -10.0 -10.0

-0.18000 -37.500 -37.500 -37.500 -37.500 -37.500 -37.500 -37.500 -37.500 -37.500 -37.5 -37.5 -28.1 -20.6 -13.1 -5.6 -1.9 0.0 0.0 0.0 0.0 0.0

-0.13875 -26.471 -26.471 -26.471 -26.471 -26.471 -26.471 -26.471 -26.471 -26.471 -26.5 -26.5 -17.6 -10.6 -3.5 4.1 9.5 10.8 11.5 12.4 13.2 14.1

-0.09500 -16.667 -16.667 -16.667 -16.667 -16.667 -16.667 -16.667 -16.667 -16.667 -16.7 -16.7 -8.3 -1.7 10.3 19.9 24.6 26.5 28.3 30.4 32.5 34.7

-0.04875 -7.895 -7.895 -7.895 -7.895 -7.895 -7.895 -7.895 -7.895 -7.895 -7.9 -7.9 0.0 16.9 29.9 43.6 48.7 48.4 48.4 49.2 49.9 50.5

0.00000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0 0.0 18.3 36.1 53.4 59.8 64.7 68.9 70.2 70.1 70.7 72.0

0.05126 19.524 19.524 19.524 19.524 19.524 19.524 19.524 19.524 19.524 20.0 27.5 43.0 63.9 80.0 97.3 106.6 109.4 110.4 111.3 112.6 114.3

0.10500 41.818 41.818 41.818 41.818 41.818 41.818 41.818 41.818 41.818 43.9 56.5 71.7 91.1 107.4 123.8 134.4 139.2 140.9 141.6 143.2 145.4

0.16125 84.348 84.348 84.348 84.348 84.348 84.348 84.348 84.348 85.191 88.6 94.9 108.5 122.5 137.3 152.5 159.0 159.8 160.8 162.5 164.7 167.0

0.22001 131.666 131.666 131.666 131.666 131.666 131.666 131.666 131.666 132.982 138.2 148.1 161.3 173.8 182.6 191.6 195.0 195.3 196.7 198.6 199.6 200.0

0.28125 152.000 152.000 152.000 152.000 152.000 152.000 152.000 152.000 154.061 160.1 172.2 186.5 199.4 209.3 217.8 227.8 234.8 237.2 237.6 239.0 241.2

0.34501 155.943 155.943 155.943 155.943 155.943 155.943 155.943 155.943 157.502 163.7 175.4 191.0 205.8 220.7 233.9 250.9 265.1 269.5 269.6 272.2 276.9

0.41125 157.071 157.071 157.071 157.071 157.071 157.071 157.071 157.071 158.535 164.8 176.4 192.4 210.6 228.4 247.5 265.3 279.1 286.1 290.0 293.9 297.9

0.48000 158.117 158.117 158.117 158.117 158.117 158.117 158.117 158.117 159.698 166.0 177.9 193.7 213.9 232.7 255.0 271.1 282.2 292.3 300.4 305.4 308.6

0.55125 159.091 159.091 159.091 159.091 159.091 159.091 159.091 159.091 160.715 167.1 179.1 194.9 213.6 232.0 253.0 268.6 281.2 293.7 303.9 310.4 315.1

0.62500 160.000 160.000 160.000 160.000 160.000 160.000 160.000 160.000 161.600 168.0 180.0 196.0 211.2 228.7 246.0 262.9 278.8 292.7 304.0 312.7 320.0
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Figure 4 Wrinkling in the picture frame test due to compaction of fibers. Data for shear curve 
estimation is shown to the right. 

3 The Picture Frame Test for Shear 

To estimate the shear curve in either one of the three material models in the previous Section, the 
picture frame test is used. This is illustrated in Figure 4, a piece of fabric is inserted into a frame and 
sheared by displacing two opposite hinge points which results in a perfect shear of the specimen. The 
shear test is performed by attaching a quadratic piece of fabric to a rigid frame and pulling one of the 
corners of the frame so that the fabric deforms according to Figure 4. The corner point is displaced an 
amount � in the direction of the applied force, where the force with magnitude ���� is directed along 
the diagonal of the deformed fabric. To determine the stress-strain curve, we use the principle of 
energy conservation, see right of Figure 4 for the following. 

The variation of external work by the force can be expressed as 

��� � ������, (8) 

and should equilibrate the corresponding variation of the internal work in the fabric. This is derived as 
follows. The deformation of the fabric is described by 

	 � 
 � �cos� (9a) 

� � �sin� (9b) 

and the deformation gradient is given by 

� � �1 cos�
0 sin�� 

(10) 

The Green-Lagrange strain is expressed in terms of the angle � as 

� � 1
2 �

0 cos�
cos� 0 � (11) 

and the second Piola-Kirchoff shear stress is a function of the Green-Lagrange shear strain, i.e., 

��� � ����
cos�
2 � (12) 

The variation of the internal work can be expressed as 

� � 

� 

� 

� 

 

� 
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��� = 2 � ��� �����
 
Ω�

��

�
 = −���sin� ��
�
 ���(

cos�
2

)�
 
(13) 

where � is the thickness of the fabric and � is the length of the sides. The displacement 
 can be 
expressed in terms of the shear angle � as 


 = � �2cos
�
2

− √2� (14) 

and differentiating this expression implicitly gives 

��
�
 = −

1

�sin
�
2

 
(15) 

The final expression of the internal work variation becomes 

��� = 2��cos
�
2
��� �cos�

2
��
. (16) 

Since the variation of the internal work is equal to the variation of the external work, we get 

	�
� = 2��cos
�
2
��� �cos�

2
� (17) 

or when substituting � we get the following shear data pairs 
��� =

1

2
� 


�√2
+ 1�� − 1� (18a) 

��� =
	(
)

���√2 + 
� 
(18b) 

The reason for using energy conservation in the derivation of the stress-strain curve is due to the 
presence of the rigid frame that resists the fabric from deforming. Using a force equilibrium principle is 
problematic since the rigid frame sustains much of the load. The magnitude of this load is unknown 
and must be treated correctly in a force equilibrium equation. However, the rigid frame does not store 
energy, hence the energy principle is the preferred choice. 

Assuming that the fabric remains planar with respect to the picture frame, it is reasonable to assume  

	�
� → ∞	when	
 → √2�√2 − 1�� (19) 

and the elastic model thus predicts 

��� → ∞	when	��� → 1/2 (20) 

but the shear data curves normally used in fabric material data typically never implements this. A 
consequence of the conventional approach is that the the effect of packing of yarns as the volume 
decreases is not captured properly. It can be debated how this is adequately modelled, but we choose 
to see this as a volumetric effect not necessarily pertinent to shear deformation but to any volume 
reductive deformation. So the shear curve is essentially used to estimate the shear response for small 
to moderate strains, but when the jacobian  = det(!) becomes smaller than some critical value  	, the 
pressure is increased by an additional term. In mathematical terms this packing term can be written 

" = #	ln � 	 � ,		for	 ≤  	  
(21) 

where #	 is a bulk modulus used for the purpose. The violation of (20) is closely connected to the 
general draw-backs of a Kirchhoff St Venant hyperelastic material in compression, which is also 
remedied by augmentations resulting in infinite elastic energy for vanishing volume, see [2]. 

A piece of fabric can be seen as a composition of air (void) and dense woven material (solid) that by a 
homogenization argument is modelled as a continuum. From this viewpoint, the physical interpretation 
of  	 would be the volume ratio of the solid to the homogenized material. When deformed 
volumetrically there is little resistance until all air is gone and the fabric is solidified, then the 
compaction kicks in. As mentioned above this is not just pertinent to shear deformation, for uniaxial 
compression the same physical phenomenon takes place and (21) essentially replaces steep slopes 
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in the uniaxial compression curves. In Figure 5 the simulated wrinkling in the picture frame test is 
shown in comparison to a complete fold up of a model without compaction stiffening. 

 
 

 

Figure 5 Simulation result of picture frame test without and with compaction. 
 

4 Resolution of Dynamic Instabilities 

4.1 Must Elastic Materials be Hyperelastic? 

A hyperelastic material is characterized by either one of the three equivalent statements 
 

1. The stress � is derived from an elastic energy potential ����, � � ��

��
. 

2. The work done by the material in an arbitrary closed cycle is zero, ∮�: �� � 0. 
3. The material tangent modulus has major symmetry, �:  �  �! :" � ":  �  �! : � for arbitrary � 

and ". 
 
From this, it can be concluded from analysis of fabric materials that FORM=14 is hyperelastic while 
FORM=-14 and Stress Map in general are not. While this seems more of an academic detail, it will be 
shown that there are significant practical consequences in the simulation of the three materials. In 
Figure 6, the simulation under study is shown, an inflation of a mushroom airbag. Starting from a flat 
configuration, the airbag is pressurized during the first 50	%& and after that the pressure is kept 
constant for the remainder of the simulation. Despite using reasonable elastic material data for all 
three materials, albeit including coupling effects for the latter two, only FORM=14 yields a stable 
simulation. This is illustrated in Figure 7, showing that the energy balance deteriorates for FORM=-14 
and Stress Map. In what follows, we show that thermodynamics provides a reason to assume that an 
elastic material must be hyperelastic, and we believe this is the reason for the observed dynamic 
instabilities. As a reference, the problem has been treated in e.g. [3]. 
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Figure 6 Inflation of mushroom airbag. 
 
Consider a body ℬ occupying the domain $� at time zero. The equations of motion can be written 

#% + � �: �% 
$�

�

= � (22) 

where # is the kinetic energy and � is the external power. The first law of thermodynamics states that 
energy cannot be created or destroyed, and is mathematically written as 

� &��%
$� =

�

� �: �% 
$�

�

+ � &�'
$�

�

− � (� ∙ )�
�$�
�
�

, 
(23) 

where &� is the material density, � = �(�, *) is the specific internal energy, ' is the heat supply per unit 
mass and (� ∙ )� is the heat flux across the boundary of ℬ. Furthermore, the second law of 
thermodynamics essentially says that the dissipation must be positive, i.e., the work performed by a 
system can at most be equal to the energy put in. This can be expressed as Clausius‘ inequality for an 
arbitrary cyclic process 
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+,� &�'* 
$�

�

− � (� ∙ )�* 
�$�
�
�

- ≤ 0, 
(24) 

where * is the temperature. We restrict ourselves to isothermal processes, i.e., the temperature * is 
constant. Integration of the first law (23) for a cyclic process results in 

+� �: �% 
$�

�

= − +,� &�'
$�

�

− � (� ∙ )�
�$�
�
�

-, 
(25) 

and by using Clausius’ inequality (24) for the right hand side in (25) we get 

+� �: �% 
$�

�

≥ 0. 
(26) 

If we use (26) in (22) for � = 0, i.e., no external forces, we can deduce that the kinetic energy for a 
cyclic deformation must decrease 

∆# = − +� �: �% 
$�

�

≤ 0. 
(27) 

This inequality holds for any material at constant temperature and makes intuitive sense, a body 
subject to free vibration cannot increase its kinetic energy during a cyclic deformation, which imposes 
restrictions on our elastic materials.  
 
A Cauchy-elastic material is a material where the second Piola-Kirchhoff stress � is a function of the 
Green strain �, � = �(�), so obviously all three materials we consider here are elastic. Now, if there 
exists a cyclic deformation for which ∆# < 0, i.e., strict inequality holds in (27), then obviously this 
deformation reversed will result in ∆# > 0 because of the presumed elasticity. Consequently an elastic 
material must satisfy 

+� �: �% 
$�

�

= 0 
(28) 

for any cyclic deformation. This is one of the definitions of a hyperelastic material and thus the elastic 
formulations FORM=-14 and Stress Map are thermodynamically invalid. This theoretical analysis also 
provides an understanding of what is going on in our simulations. When the airbags are fully 
pressurized there is no further external energy input but the systems are under free vibration. For the 
non-hyperelastic materials elements are likely deforming in cycles that generate kinetic energy and 
thus cause erratic behaviour. So theory and practice are in agreement, elastic materials must be 
hyperelastic. 

4.2 Hysteresis Model 

From a thermodynamical standpoint, pure elastic materials do not exist in practice but all are 
somehow subjected to dissipation. From the observations in Section 4.1, this seems to not only be of 
theoretical interest but is also important for numerical stability in transient simulations. We should at 
this point mention that Rayleigh damping is available in the fabric material models, but this has not 
been powerful enough to render stability in our simulations. Presumably a problem with numerical 
damping is the rate dependence, and it can only serve the purpose of stabilizing (almost) hyperelastic 
materials. Moreover, real life fabric materials display a hysteresis in cyclic loading as shown in Figure 
8 and the justification for incorporating rate-independent hysteresis is therefore twofold, physical and 
numerical. 
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Figure 7 Internal energies by part for the mushroom airbag, FORM=14, FORM=-14 and Stress 
Map, respectively. 
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Figure 8 Hysteresis in uniaxial cyclic loading for a typical fabric. 
 
The hysteresis model implemented in the Stress Map Material is based on scaling the elastic stress by 
a factor . that evolves with the stress power 

/% = � ∶ �% . (29) 

The nice thing about this quantity is that it can be used to generalize the familiar concepts of loading 
and unloading to three dimensional stress-strain states; a material point is under loading if /% > 0 and 
unloading if /% < 0. The evolution of . is thus related to the stress power in the sense that it will 
increase during loading and decrease on unloading, quickly enough to introduce the dissipation 
sought. The exact mathematical formula for . is complicated, but in essence the function looks like 

. = ,1 − 0 + 0exp12�/ − /�3 /% < 0

1 − 0exp4−2�/ − /�5 /% ≥ 0
 

(30) 

where / is the maximum obtained value of / during the simulation and / is the minimum obtained 

value since the point in time where / was attained. In other words, on unloading . will exponentially 
decay to 1 − 0 and on loading it will exponentially grow to 1 and always be restricted by the lower and 
upper bounds, 1 − 0 < . ≤ 1. The decay rate 2 depends on the strain and is determined internally, so 
the only parameter the user needs is the hysteresis factor 0. This is determined from the desired 
amount of dissipation, and with reference to a general loading/unloading cycle illustrated in Figure 9 
the relation 1 − 0 = /�//� should hold. Note that this model is primarily intended for enhancing 
numerical stability rather than fitting unloading/reloading data, and numerical experiments have shown 
that a value of 5% has sufficed to resolve the dynamic instabilities observed in Section 4.1. 
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Figure 9 Loading and unloading for determining the hysteresis factor 6. 
 

5 Bending 

The fabric materials in LS-DYNA use a special membrane element formulation that cannot sustain 
bending deformation. Pieces of fabrics can therefore fold easily along meshlines without resistance 
which in turn may result in uncontrollable motion. Furthermore, this precludes the material models 
from being run implicitly since rigid body modes will be present. As means to remedy these 
drawbacks, it is possible to coat the fabric with a thin layer of elastic-plastic material, for the following 
we refer to Figure 10. 
 
Assume that the fabric itself is made up of elements with nodal coordinates 7� and thickness 8. Each 
membrane element has its unique normal 9 calculated directly from the nodal coordinates, and from 

this we can calculate unique nodal normals )� as some average of the element normals 9, : ∈  �, 
where  � is the index set of elements with node ; in its connectivity 

)� =
∑ 9∈��=∑ 9∈��

=. 
(31) 

We can then create virtual coating elements of thickness � located at appropriate offsets from the 
location of the membrane elements 

>� = 7� −
8 + �

2
)� 

(32a) 

?� = 7� +
8 + �

2
)� 

(32b) 

and by using the same connectivity for the two layers we have essentially created a new mesh for 
each layer. The kinematics of the coating in terms of the variation of nodal coordinates 7� can be 
determined from the variation of (32) and (31), 

�>� = �7� −
8 + �

2
�)� 

(33a) 

�?� = �7� +
8 + �

2
�)� 

(33b) 

where 

�)� = �@ − )�⨂)�� ∑ �9∈��=∑ 9∈��
=. 

(34) 

The variation �9 can be directly expressed in terms of the global coordinates �7�, ; ∈ A , where A is 
the index set of nodes making up the connectivity of element :. With the knowledge of �>� and �)� we 
can employ a shell formulation of choice for the bottom layer, and likewise for the top layer using �?� 
and �)�. A Hughes-Liu type shell is used, for which the rate of deformation can be expressed as  �B� = C�

��7� (35a) 

�B� = C�
��7�  (35b) 

where the C matrices contain the information from (33) and (34). The coat material is assumed to be 
elastic and perfectly plastic with an elastic modulus � and a yield stress D�, and the constitutive law 
results in coating stresses E� and E�. The virtual work principle provides the nodal forces by the 
equations 

F�

�
= ��C�

���E� 
(36a) 
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F�
� = ��C�

���E� 
(36b) 

where it is assumed that the integral is over the bottom and top layer, respectively. 
 

 
Figure 10 Membrane elements in bending. 
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Figure 11 Non-coated and coated fabrics folded onto a cylinder under the influence of gravity. 

The effect of applying this technique can be intuitively understood by studying Figure 10, which shows 
four initially plane membrane elements subjected to an out of plane deformation. If the membrane 
element side lengths remain constant (solid lines), by design the top layer will be subjected to 
membrane tension while the bottom layer will be subjected to compression. This result in internal 
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energy in the coating and the nodal forces will act to prevent this deformation. Another interesting 
observation is that the force in node 5 in Figure 10 depends on the motion in all of the 9 nodes 
displayed, which is a necessity due to the lack of rotational degrees of freedom.   

In Figure 11 the effect of coating is shown, a fabric is folded onto a cylinder under the influence of 
gravity. The top figure shows the result without coating, and the wrinkling is quite apparent. The 
following two figures show the effect of gradually stronger coating, leading to diminished wrinkling 
tendencies and a seemingly more controlled deformation. The data for the coating, �, D� and �, should 
be chosen with physics in mind. Material data should presumably correspond to some plastic polymer 
and the thickness � should not be more than a few percent of the fabric thickness 8. 

  
Figure 12 Local region of mushroom cushion for FORM=14 (left) and Stress Map (right). From 
top to bottom, the a-fiber stress, the b-fiber stress and the failure regions (grey) are shown. A 
critical seam is highlighted bottom right. 
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6 Numerical examples 

6.1 Predicting Seam Failure 

One of the main motivations for the Stress Map model is the need for accurate stress representation 
to be able to predict seam failure. If considering an airbag mushroom from a system view, it behaves 
essentially the same regardless if FORM=14, FORM=-14 or Stress Map is used, but there are 
differences in the local stress and thus the failure/acceptance criterion to potentially impact cushion 
acceptability.  
 
In Figure 12 this is illustrated for a failure criterion based on the maximum fiber stress. A local region 
of the mushroom airbag is shown with the fiber stresses colorized with the same contour range. The 
stress state at the seam between the top and bottom fabric sheets predicts failure for the Stress Map 
material but not for the FORM=14 material in this case. 

6.2 Bending Stiffness Examples 

Autoliv airbag fabric materials exhibit bending stiffness due to tightness of weave and / or coating. This 
stiffness can be approximated using the MAT_FABRIC_MAP material model coating option. Two 
simple examples were developed to demonstrate this feature: fabric cantilever and fabric loop. 

6.2.1 Fabric cantilever 

This stiffness can be observed by simply extending a piece of airbag fabric over the edge of a desk or 
table. The bending stiffness keeps the fabric from collapsing and hanging straight down. This 
phenomenon can be modeled using the coating feature in the MAT_FABRIC or MAT_FABRIC_MAP 
material model. This fabric cantilever test was performed and the fabric sag was measured, as shown 
in Figure 13. 
 

 
 
Figure 13 Fabric cantilever test. 
 
A simple rectangular model was developed to demonstrate the effects with and without bending 
stiffness. First, this model was executed without bending stiffness, as shown in Figure 14. As 
expected, the fabric hangs straight down without the coating option. 
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Figure 14 Fabric cantilever model without bending stiffness. 

 
Reasonable values for coating stiffness and thickness were chosen and good correlation with the 
fabric cantilever test was achieved, as shown in Figure 15.  
 

 
 

 
 

Figure 15 Fabric cantilever correlation. 
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A simple fabric cantilever test can be accurately modeled with the MAT_FABRIC_MAP material in LS-
Dyna.  

6.2.2 Fabric loop 

Bending stiffness can also be observed by placing a flat piece of fabric on a desk or table and moving 
the ends together. Because of bending stiffness, the fabric displaces upward and assumes a looping 
shape, as shown in Figure 16.  

 
Figure 16 Fabric loop test. 

 
This phenomenon can be modeled using the coating feature in the MAT_FABRIC_MAP material 
model. A simple rectangular model was developed to demonstrate the effects with and without 
bending stiffness. First, the model was executed without bending stiffness, as shown in Figure 17. As 
expected, the fabric collapses upon itself. 
 

 
 

Figure 17 Fabric loop model without bending stiffness. 
 
Values for coating stiffness and thickness were taken from the fabric cantilever model and good 
correlation with the fabric loop test was achieved, as shown in Figure 18. 
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Figure 18 Fabric loop comparison. 

 
These examples show that bending stiffness is required to accurately model airbag fabric behavior. 
The coating parameters of the MAT_FABRIC_MAP material are an effective way to capture the 
bending stiffness in a membrane element. 

6.3 Fiber Coupling Test 

6.3.1 Simplified EjM test 

A model was built to represent a hypothetical test to illustrate the fabric stiffness effects due to fiber 
coupling. This test consists of a standard ejection mitigation head form and a simply supported, 
unpressurized, circular fabric specimen. The head form is given an initial velocity and a peak 
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excursion was determined, as shown in Figure 19. This test focuses attention on fabric performance 
without the complications of pressure or complex boundary conditions. Differences in results can be 
directly attributed to changes in the fabric stiffness. Various fiber coupling options of the 
MAT_FABRIC_MAP were compared to the current uncoupled material model, MAT_FABRIC, 
FORM=14.  
 
 

 
 
Figure 19 Simplified EjM setup. 
 
Stress maps were developed for the following linear Poisson’s ratios, '�� � '�� � 0,  '�� �
0.75	&	'�� � 0.3, '�� � 0.3	&	'�� � 0.75 and '�� � 0.9	&	'�� � 0.9. These fiber coupling options were 
chosen because the results are intuitive. The simulation with Poisson’s ratios equal to zero should 
produce the same results as the FORM=14 material model. The case where '�� � 0.75	&	'�� � 0.3 
was chosen because this is a crude estimation of an actual fabric material based on uniaxial test data. 
This material should be stiffer and result in less excursion than the uncoupled analyses. The case 
where '�� � 0.3	&	'�� � 0.75 was chosen because it should produce the same excursion as the case 
where '�� � 0.75	&	'�� � 0.3, due to the symmetry of the setup. The case where '�� � 0.9	&	'�� � 0.9 
was chosen because this is an example of a fabric that is highly coupled. The fabric should be the 
stiffest material evaluated and result in the least amount of excursion. Bending stiffness (via coating 
parameters determined in Section 6.2.1) was added to the MAT_FABRIC_MAP materials and the 
simulations were executed again. These results should be a little stiffer than the models without the 
coating and should result in lower excursions.The peak excursion results of these simulations are 
shown in Table 1. The excursion results are very consistent and the MAT_FABRIC_MAP performed 
as expected. 
 
Table 1 Peak excursion for the simplified EjM model. 
 

Material Model 
Excursion (mm) 

No Coating Coating 

MAT 34, Form=14 156.4 152.8 

Stress Map, No Coupling 156.9 153.6 

Stress Map, Linear Coupling, 0.75 & 0.3 138.4 136.5 

Stress Map, Linear Coupling, 0.3 & 0.75 138.4 136.6 

Stress Map, Linear Coupling, 0.9 & 0.9 94.7 94.4 
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6.3.2 Automotive Safety - Ejection Mitigation Simulation 

Ejection mitigation (EjM) is occupant protection in the event of a rollover accident. Data show that 
serious injury or death are more likely when an occupant is ejected from the vehicle. A 
countermeasure for this type of accident is an internal curtain airbag (ICAB). The ICAB deploys from 
the roof trim and covers the window, thus keeping the occupant inside the vehicle. Autoliv 
manufactures IC airbags and conducts ejection mitigation testing to demonstrate compliance to the 
US National Highway Traffic Safety Administration’s Standard, FMVSS 226. 
 
General EjM testing consists of a linear impactor with a head form that is launched at a pressurized 
ICAB that is suspended from a car body. The linear impactor and head form mass is 18	./. Two load 
cases are performed with different initial head form energies and different airbag pressures.  
The result of an EjM test is the amount of head form excursion. Head form excursion is the distance 
the head form travels past the window inner surface. FMVSS 226 requires the peak head form 
excursion to be less than 100	%% to pass government testing. Most OEM’s require Autoliv to 
demonstrate excursions less than 80	%% as an added safety precaution. 
 
In 2013, Autoliv conducted a highly controlled and instrumented series of EjM tests using a small scale 
cushion and an adjustable test fixture instead of a car body, as seen in Figure 20. 
 

 
 

Figure 20 Autoliv test setup. 
 

Initial ICAB pressure was controlled as well as the initial tether tension. A test was repeated several 
times and an average peak head form excursion of 55	%% was measured. 
 
An LS-Dyna model was built to simulate the testing and predict the head form excursion, as shown in 
Figure 21.  
 



10
th
 European LS-DYNA Conference 2015, Würzburg, Germany 

 

 

 
© 2015 Copyright by DYNAmore GmbH 

 
Figure 21 EjM test model. 

 
Using MAT_FABRIC, FORM=14, the peak predicted excursion is 87	GG. Using the equivalent 
MAT_FABRIC_MAP material model with fiber coupling and the coating option for bending stiffness, 
the peak excursion was reduced to 57	GG. The FORM=14 excursion would not pass the OEM’s 
requirements and require a redesign of the ICAB. Using the more realistic material model produces an 
excursion prediction that agrees with the test measurement and passes the OEM EjM requirement. 

7 Summary 

A thorough investigation of the most common fabric material modeling options in LS-DYNA has been 
presented, with emphasis on the new Stress Map material. The Stress Map material allows for general 
in-plane membrane coupling between the fiber stresses and facilitates the assessment of an airbag 
design from a constructional point of view. A number of additional features have been discussed, 
including hysteresis, volumetric compaction and bending, that we find necessary to enhance 
robustness and accuracy in the present model. Numerical examples highlight the effects of these 
features and also show the potential advantages of incorporating fiber coupling in the simulation of 
airbag deployment.  
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